Package ‘lintr’

July 19, 2023

Title A 'Linter' for R Code
Version 3.1.0

Description Checks adherence to a given style, syntax errors and possible
semantic issues. Supports on the fly checking of R code edited with
'RStudio IDE', 'Emacs', 'Vim', 'Sublime Text', 'Atom' and 'Visual
Studio Code'.

License MIT + file LICENSE
URL https://github.com/r-1ib/lintr, https://lintr.r-1lib.org

BugReports https://github.com/r-1lib/lintr/issues
Depends R (>=3.5)

Imports backports,
codetools,
cyclocomp,
digest,
glue,
knitr,
rex,
stats,
utils,
xml2 (>=1.0.0),
xmlparsedata (>= 1.0.5)

Suggests bookdown,
crayon,
httr (>=1.2.1),
jsonlite,
mockery,
patrick,
rlang,
rmarkdown,
rstudioapi (>= 0.2),
testthat (>= 3.1.5),
tibble,
tufte,
withr (>=2.5.0)

Enhances data.table

VignetteBuilder knitr

https://github.com/r-lib/lintr
https://lintr.r-lib.org
https://github.com/r-lib/lintr/issues

Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Collate 'T_and_F_symbol_linter.R’'
"utils.R'
'aaa.R’
'absolute_path_linter.R'
'actions.R'
'addins.R’
'any_duplicated_linter.R'
'any_is_na_linter.R’'
'assignment_linter.R'
'backport_linter.R’
'boolean_arithmetic_linter.R'
'brace_linter.R'
'cache.R’
'class_equals_linter.R'
‘commas_linter.R'
'comment_linters.R'
'comments.R'
'condition_message_linter.R’'
'conjunct_test_linter.R’'
‘consecutive_assertion_linter.R'
'cyclocomp_linter.R'
'declared_functions.R'
'deprecated.R’
'duplicate_argument_linter.R'
'empty_assignment_linter.R’'
'equals_na_linter.R’
'exclude.R’
'expect_comparison_linter.R'
'expect_identical_linter.R'
‘expect_length_linter.R'
'expect_lint.R'
'expect_named_linter.R’'
'expect_not_linter.R'
'expect_null_linter.R'
'expect_s3_class_linter.R'
'expect_s4_class_linter.R'
'expect_true_false_linter.R'
'expect_type_linter.R'
'extract.R’
'extraction_operator_linter.R'
'fixed_regex_linter.R'
'for_loop_index_linter.R'
'function_argument_linter.R'
'function_left_parentheses_linter.R'
'function_return_linter.R'
'get_source_expressions.R'

'ids_with_token.R'
'ifelse_censor_linter.R'
'implicit_assignment_linter.R’'
'implicit_integer_linter.R'
'indentation_linter.R'
'infix_spaces_linter.R’'
'inner_combine_linter.R'
'is_lint_level.R'
'is_numeric_linter.R'
'lengths_linter.R'
'line_length_linter.R’'

'lint.R’

'linter_tag_docs.R'
'linter_tags.R'
'lintr-deprecated.R'
'lintr-package.R’
'literal_coercion_linter.R'
'make_linter_from_regex.R'
'matrix_apply_linter.R'
'methods.R’
'missing_argument_linter.R’'
'missing_package_linter.R'
'namespace.R’
'namespace_linter.R'
'nested_ifelse_linter.R'
'nonportable_path_linter.R'
'numeric_leading_zero_linter.R’'
'object_length_linter.R'
'object_name_linter.R’
'object_usage_linter.R'
'outer_negation_linter.R'’
'package_hooks_linter.R’'
'‘paren_body_linter.R'
'paste_linter.R’
'path_utils.R'
'pipe_call_linter.R'
'pipe_continuation_linter.R'
'quotes_linter.R'
'redundant_equals_linter.R'
'redundant_ifelse_linter.R'
'regex_subset_linter.R'
'routine_registration_linter.R'
'semicolon_linter.R'
'seq_linter.R'

'settings.R'

'settings_utils.R'
'sort_linter.R'
'spaces_inside_linter.R’'
'spaces_left_parentheses_linter.R'
'sprintf_linter.R’'
'string_boundary_linter.R’'
'strings_as_factors_linter.R’'

4 R topics documented:

'system_file_linter.R’
'trailing_blank_lines_linter.R’
'trailing_whitespace_linter.R'
'tree_utils.R'
'undesirable_function_linter.R'
'undesirable_operator_linter.R'
'unnecessary_concatenation_linter.R'
'unnecessary_lambda_linter.R'
'unnecessary_nested_if_linter.R’
'unnecessary_placeholder_linter.R’
‘unreachable_code_linter.R'
'unused_import_linter.R’
'use_lintr.R'
'vector_logic_linter.R'
'whitespace_linter.R'

'with.R'

'with_id.R'
'xml_nodes_to_lints.R'
'xp_utils.R'

'yoda_test_linter.R'

'zzz.R'

Language en-US

R topics documented:

absolute_path_linter 7
all_linters e e e e e e e e e 8
all_undesirable_functions e 8
any_duplicated_linter 10
any_is_na_linter e 11
assignment_linter Lo e 12
available_linters e 13
backport_linter 15
best_practices_linters 16
boolean_arithmetic_linter 17
brace_linter e 18
checkstyle_output L. 19
class_equals_linter 20
clear_cache e e e e 21
commas_linter. e e e e e e e e e e e 21
commented_code_linter e e 22
common_mistakes_linters e e 23
condition_message_linter oL 24
configurable_linters 25
conjunct_test_linter L. Lo 26
consecutive_assertion_linter L e 27
consistency_linters 28
correctness_linters e e e e e 29
cyclocomp_linter 29
default_linters e e e 30

default_settings e e 31

R topics documented: 5

deprecated_linters L. 32
duplicate_argument_linter L 33
efficiency_linters 34
empty_assignment_linter 35
equals_na_linter 36
exclude e 37
executing_linters L e e e 37
expect_comparison_linter Lo 38
expect_identical_linter 39
expect_length_linter 40
expect_lint. e 41
expect_lint_free 42
expect_named_linter 42
expect_not_linter L 43
expect_null_linter 44
expect_s3_class_linter 45
expect_sd_class_linter 46
expect_true_false linter. 47
expect_type_linter. 48
extraction_operator_linter 48
fixed_regex_linter L. e 50
for_loop_index_linter L 51
function_argument_lintero oL 52
function_left_parentheses_linter 53
function_return_linter L L e 54
GEL_I_SNG e e 55
EL_SOUICE_EXPIeSSIONS v v v v v i e et e e e e e e e e e e 56
ids_with_token L e 58
ifelse_censor_linter e e 59
implicit_assignment_linter 60
implicit_integer_linter e 61
indentation_linter e e e 62
infix_spaces_linter 64
inner_combine_linter e e 66
is_lint_level e e e e e 67
is_numeric_lINter 67
lengths_linter L 68
line_length_linter L 69
LNt . . . e e e 70
IiNt-S3 . . . e e e e 72
Linter e e e e 73
LNters e e e e e 73
linters_with_defaults 76
linters_with_tags 77
literal_coercion_linter e e 78
matrix_apply_linter e 79
missing_argument_linter L. Lo 80
missing_package_linter e 81
modify_defaults L 82
namespace_linter L. 83
nested_ifelse_linter e e 84

nonportable_path_linter L 85

R topics documented:

numeric_leading_zero_linter oL 85
object_length_linter 86
object_name_linter 87
object_usage_linter e 89
outer_negation_lintero e e e 90
package _development linters Lo oL 91
package_hooks_linter L 92
paren_body_linter L. e 93
parse_exclusions L e e e e 94
paste_linter 94
pipe_call_linter 96
pipe_continuation_lintero 97
quotes_linter 98
readability_linters e 99
read_Settings L. e e e e 101
redundant_equals_linter L 101
redundant_ifelse_linter 102
regex_subset_linter L. 103
robustness_linters 104
routine_registration_linter L. e 105
sarif_output e e e 106
semicolon_linter L 106
seq_linter L e e e 108
SOIt_IINtET e e 109
spaces_inside_linter Lo 110
spaces_left_parentheses_linter 111
sprintf_linter L e 112
strings_as_factors_linter 113
string_boundary_linter e 114
style_linters L e e e 115
system_file_linter L. 116
todo_comment_linter e e e e 117
trailing_blank lines_linter Lo 118
trailing_whitespace_linter. 119
T_and_F_symbol_linter. 120
undesirable_function_linter 121
undesirable_operator_linter 122
unnecessary_concatenation_lintero 123
unnecessary_lambda_linter oL L 125
unnecessary_nested_if_linter Lo 126
unnecessary_placeholder_linter oL oo 126
unreachable_code_linter 127
unused_import_lintero 128
use_LINtr L e e 129
vector_logic_linter L. 130
whitespace_linter L 131
xml_nodes_to_lints e e 132

yoda_test_linter e e e 133

absolute_path_linter 7

absolute_path_linter Absolute path linter

Description

Check that no absolute paths are used (e.g. "/var", "C:\System", "~/docs").

Usage

absolute_path_linter(lax = TRUE)

Arguments
lax Less stringent linting, leading to fewer false positives. If TRUE, only lint path
strings, which
* contain at least two path elements, with one having at least two characters
and
* contain only alphanumeric chars (including UTF-8), spaces, and win32-
allowed punctuation
Tags

best_practices, configurable, robustness

See Also

* linters for a complete list of linters available in lintr.

e nonportable_path_linter()

Examples
Following examples use raw character constant syntax introduced in R 4.0.

will produce lints
lint(
text = 'R"--[/blah/file.txt]--"",
linters = absolute_path_linter()
)

okay
lint(
text = 'R"(./blah)""',
linters = absolute_path_linter()

8 all_undesirable_functions

all_linters Create a linter configuration based on all available linters

Description

Create a linter configuration based on all available linters

Usage
all_linters(packages = "lintr"”, ...)
Arguments
packages A character vector of packages to search for linters.
Arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in the list of linters, it is replaced
by the new element. If it does not exist, it is added. If the value is NULL, the
linter is removed.
See Also

* linters_with_defaults for basing off lintr’s set of default linters.
* linters_with_tags for basing off tags attached to linters, possibly across multiple packages.
* available_linters to get a data frame of available linters.

* linters for a complete list of linters available in lintr.

Examples

names(all_linters())

all_undesirable_functions
Default undesirable functions and operators

Description

Lists of function names and operators for undesirable_function_linter() and undesirable_operator_linter().
There is a list for the default elements and another that contains all available elements. Use
modify_defaults() to produce a custom list.

Usage

all_undesirable_functions
default_undesirable_functions
all_undesirable_operators

default_undesirable_operators

all_undesirable_functions 9

Format

A named list of character strings.

Details

The following functions are sometimes regarded as undesirable:
* attach() modifies the global search path. Use roxygen2’s @importFrom statement in pack-
ages, Or : : in scripts.

* browser() pauses execution when run and is likely a leftover from debugging. It should be
removed.

* debug() traps a function and causes execution to pause when that function is run. It should
be removed.

* debugcall() works similarly to debug(), causing execution to pause. It should be removed.
* debugonce() is only useful for interactive debugging. It should be removed.

* detach() modifies the global search path. Detaching environments from the search path is
rarely necessary in production code.

* ifelse() isn’ttype stable. Use an if/else block for scalar logic, or use dplyr: :if_else()/data.table: :fifels
for type stable vectorized logic.

* .libPaths() permanently modifies the library location. Use withr::with_libpaths() for
a temporary change instead.

» library() modifies the global search path. Use roxygen2’s @importFrom statement in pack-
ages, or : : in scripts.

* loadNamespace() doesn’t provide an easy way to signal failures. Use the return value of
requireNamespace () instead.

* mapply() isn’t type stable. Use Map () to guarantee a list is returned and simplify accordingly.

* options() permanently modifies the session options. Use withr::with_options() for a
temporary change instead.

* par() permanently modifies the graphics device parameters. Use withr::with_par() for a
temporary change instead.

* require() modifies the global search path. Use roxygen2’s @importFrom statement in pack-
ages, and library() or :: in scripts.

* sapply() isn’t type stable. Use vapply () with an appropriate FUN. VALUE= argument to obtain
type stable simplification.

» setwd() modifies the global working directory. Use withr::with_dir() for a temporary
change instead.

* sink() permanently redirects output. Use withr::with_sink() for a temporary redirection
instead.

* source() loads code into the global environment unless local = TRUE is used, which can
cause unexpected behavior.

* substring() should be replaced by substr () with appropriate stop= value.

* Sys.setenv() permanently modifies the global environment variables. Use withr: :with_envvar()
for a temporary change instead.

* Sys.setlocale() permanently modifies the session locale. Use withr: :with_locale() for
a temporary change instead.

10 any_duplicated_linter

* trace() traps a function and causes execution of arbitrary code when that function is run. It
should be removed.

* undebug() is only useful for interactive debugging with debug(). It should be removed.

* untrace() is only useful for interactive debugging with trace(). It should be removed.
The following operators are sometimes regarded as undesirable:

» ::: accesses non-exported functions inside packages. Code relying on these is likely to break
in future versions of the package because the functions are not part of the public interface and
may be changed or removed by the maintainers without notice. Use public functions via : :
instead.

* <<- and ->> assign outside the current environment in a way that can be hard to reason about.
Prefer fully-encapsulated functions wherever possible, or, if necessary, assign to a specific
environment with assign(). Recall that you can create an environment at the desired scope
with new.env ().

any_duplicated_linter Regquire usage of anyDuplicated(x) > @ over any(duplicated(x))

Description

anyDuplicated() exists as a replacement for any(duplicated(.)), which is more efficient for
simple objects, and is at worst equally efficient. Therefore, it should be used in all situations instead
of the latter.

Usage

any_duplicated_linter()

Details
Also match usage like length(unique(x$col)) == nrow(x), which can be replaced by anyDuplicated(x$col)
==0L.

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "any(duplicated(x), na.rm = TRUE)",
linters = any_duplicated_linter()

)

lint(
text = "length(unique(x)) == length(x)",

any_is_na_linter 11

linters = any_duplicated_linter()

)

okay

lint(
text = "anyDuplicated(x)",
linters = any_duplicated_linter()

)

lint(
text = "anyDuplicated(x) == oL",
linters = any_duplicated_linter()

any_is_na_linter Require usage of anyNA(x) over any(is.na(x))

Description

anyNA() exists as a replacement for any (is.na(x)) which is more efficient for simple objects, and
is at worst equally efficient. Therefore, it should be used in all situations instead of the latter.

Usage

any_is_na_linter()

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "any(is.na(x), na.rm = TRUE)",
linters = any_is_na_linter()

)

lint(
text = "any(is.na(foo(x)))",
linters = any_is_na_linter()

)

okay
lint(
text = "anyNA(x)",
linters = any_is_na_linter()

12 assignment_linter

lint(
text = "anyNA(foo(x))",
linters = any_is_na_linter()

)

lint(
text = "any(!is.na(x), na.rm = TRUE)",
linters = any_is_na_linter()

)

assignment_linter Assignment linter

Description

Check that <- is always used for assignment.

Usage

assignment_linter(
allow_cascading_assign = TRUE,
allow_right_assign = FALSE,
allow_trailing = TRUE

)

Arguments

allow_cascading_assign

Logical, default TRUE. If FALSE, <<- and ->> are not allowed.
allow_right_assign

Logical, default FALSE. If TRUE, -> and ->> are allowed.

allow_trailing Logical, default TRUE. If FALSE then assignments aren’t allowed at end of lines.

Tags

configurable, consistency, default, style

See Also

* linters for a complete list of linters available in lintr.

* https://style.tidyverse.org/syntax.html#assignment-1

Examples

will produce lints

lint(

text = "x = mean(x)",

linters = assignment_linter()
)

code_lines <- "1 -> x\n2 ->> y"

https://style.tidyverse.org/syntax.html#assignment-1

available_linters 13

writeLines(code_lines)
lint(
text = code_lines,
linters = assignment_linter()

)
okay
lint(
text = "x <- mean(x)",
linters = assignment_linter()
)

code_lines <- "x <= 1\ny <<- 2"
writeLines(code_lines)
lint(

text = code_lines,

linters = assignment_linter()

customizing using arguments
code_lines <= "1 -> x\n2 ->> y"
writeLines(code_lines)
lint(
text = code_lines,
linters = assignment_linter(allow_right_assign = TRUE)

)

lint(
text = "x <<- 1",
linters = assignment_linter(allow_cascading_assign = FALSE)

)

writeLines("foo(bar = \n 1)")
lint(
text = "foo(bar = \n 1)",
linters = assignment_linter(allow_trailing = FALSE)

available_linters Get Linter metadata from a package

Description

available_linters() obtains a tagged list of all Linters available in a package.

available_tags() searches for available tags.

Usage

available_linters(packages = "lintr"”, tags = NULL, exclude_tags = "deprecated"”)

available_tags(packages = "lintr")

14 available_linters

Arguments
packages A character vector of packages to search for linters.
tags Optional character vector of tags to search. Only linters with at least one match-

ing tag will be returned. If tags is NULL, all linters will be returned. See
available_tags("lintr") to find out what tags are already used by lintr.

exclude_tags Tags to exclude from the results. Linters with at least one matching tag will not
be returned. If except_tags is NULL, no linters will be excluded. Note that tags
takes priority, meaning that any tag found in both tags and exclude_tags will
be included, not excluded.

Value

available_linters returns a data frame with columns ’linter’, ’package’ and ’tags’:

linter A character column naming the function associated with the linter.
package A character column containing the name of the package providing the linter.

tags A list column containing tags associated with the linter.

available_tags returns a character vector of linter tags used by the packages.

Package Authors

To implement available_linters() for your package, include a file inst/lintr/linters.csv
in your package. The CSV file must contain the columns ’linter’ and "tags’, and be UTF-8 encoded.
Additional columns will be silently ignored if present and the columns are identified by name. Each
row describes a linter by

1. its function name (e.g. "assignment_linter") in the column ’linter’.

2. space-separated tags associated with the linter (e.g. "style consistency default”) in the

column ’tags’.

Tags should be snake_case.

See available_tags("lintr") to find out what tags are already used by lintr.

See Also

* linters for a complete list of linters available in lintr.

* available_tags() to retrieve the set of valid tags.

Examples

lintr_linters <- available_linters()

If the package doesn't exist or isn't installed, an empty data frame will be returned
available_linters("does-not-exist")

lintr_linters2 <- available_linters(c("lintr"”, "does-not-exist"))
identical(lintr_linters, lintr_linters2)
available_tags()

backport_linter 15

backport_linter Backport linter

Description

Check for usage of unavailable functions. Not reliable for testing r-devel dependencies.

Usage

backport_linter(r_version = getRversion(), except = character())

Arguments
r_version Minimum R version to test for compatibility
except Character vector of functions to be excluded from linting. Use this to list ex-
plicitly defined backports, e.g. those imported from the backports package or
manually defined in your package.
Tags

configurable, package_development, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(

text = "trimws(x)",

linters = backport_linter("”3.0.0")
)
lint(

text = "str2lang(x)",
linters = backport_linter("”3.2.0")

)
okay
lint(
text = "trimws(x)",
linters = backport_linter("”3.6.0")
)
lint(

text = "str2lang(x)",
linters = backport_linter("4.0.0")

16 best_practices_linters

best_practices_linters
Best practices linters

Description

Linters checking the use of coding best practices, such as explicit typing of numeric constants.

Linters
The following linters are tagged with best_practices’:

e absolute_path_linter

e any_duplicated_linter

e any_is_na_linter

* boolean_arithmetic_linter
e class_equals_linter

e commented_code_linter

e condition_message_linter
e conjunct_test_linter

e cyclocomp_linter

e empty_assignment_linter

* expect_comparison_linter
e expect_length_linter

e expect_named_linter

e expect_not_linter

e expect_null_linter

e expect_s3_class_linter

e expect_s4_class_linter

* expect_true_false_linter
e expect_type_linter

e extraction_operator_linter
* fixed_regex_linter

e for_loop_index_linter

e function_argument_linter
e function_return_linter

* ifelse_censor_linter

e implicit_assignment_linter
e implicit_integer_linter

* is_numeric_linter

e lengths_linter

e literal_coercion_linter

boolean_arithmetic_linter

See Also

linters for a complete list of linters available in lintr.

nonportable_path_linter
outer_negation_linter
paste_linter
redundant_equals_linter
redundant_ifelse_linter
regex_subset_linter
routine_registration_linter
seq_linter

sort_linter
system_file_linter
T_and_F_symbol_linter
undesirable_function_linter
undesirable_operator_linter
unnecessary_lambda_linter
unnecessary_nested_if_linter
unnecessary_placeholder_linter
unreachable_code_linter
unused_import_linter
vector_logic_linter

yoda_test_linter

17

boolean_arithmetic_linter

Require usage of boolean operators over equivalent arithmetic

Description

length(which(x ==y)) == 0 is the same as !any(x == y), but the latter is more readable and more
efficient.

Usage

boolean_arithmetic_linter()

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

18 brace_linter

Examples

will produce lints

lint(
text = "length(which(x == y)) == oL",
linters = boolean_arithmetic_linter()

)

lint(
text = "sum(grepl(pattern, x)) == 0",
linters = boolean_arithmetic_linter()

)

okay
lint(
text = "lany(x == y)",
linters = boolean_arithmetic_linter()

)

lint(
text = "lany(grepl(pattern, x))",
linters = boolean_arithmetic_linter()

brace_linter Brace linter

Description

Perform various style checks related to placement and spacing of curly braces:

Usage

brace_linter(allow_single_line = FALSE)

Arguments

allow_single_line
if TRUE, allow an open and closed curly pair on the same line.

Details

* Opening curly braces are never on their own line and are always followed by a newline.
* Opening curly braces have a space before them.

* Closing curly braces are on their own line unless they are followed by an else.

* Closing curly braces in if conditions are on the same line as the corresponding else.

* Either both or neither branch in if/else use curly braces, i.e., either both branches use { . . .}
or neither does.

* Functions spanning multiple lines use curly braces.

checkstyle_output

Tags

configurable, default, readability, style

See Also

* linters for a complete list of linters available in lintr.
e https://style.tidyverse.org/syntax.html#indenting
e https://style.tidyverse.org/syntax.html#if-statements

Examples

will produce lints

lint(
text = "f <- function() { 1 }",
linters = brace_linter()

)

writeLines("if (TRUE) {\n return(1) }")
lint(
text = "if (TRUE) {\n return(1) }",
linters = brace_linter()

)

okay
writeLines("f <- function() {\n 1\n}")
lint(
text = "f <= function() {\n 1\n}",
linters = brace_linter()

)

writeLines("if (TRUE) { \n return(1) \n}")
lint(
text = "if (TRUE) { \n return(1) \n}",
linters = brace_linter()

)

customizing using arguments
writeLines("if (TRUE) { return(1) 3}")
lint(
text = "if (TRUE) { return(1) }",
linters = brace_linter(allow_single_line = TRUE)

)

checkstyle_output Checkstyle Report for lint results

Description

Generate a report of the linting results using the Checkstyle XML format.

Usage

checkstyle_output(lints, filename = "lintr_results.xml")

https://style.tidyverse.org/syntax.html#indenting
https://style.tidyverse.org/syntax.html#if-statements
https://checkstyle.sourceforge.io

20 class_equals_linter

Arguments
lints the linting results.
filename the name of the output report

class_equals_linter Block comparison of class with ==

Description

Usage like class(x) == "character” is prone to error since class in R is in general a vector. The
correct version for S3 classes is inherits(): inherits(x, "character”). Often, class k will
have an is. equivalent, for example is.character() or is.data.frame().

Usage

class_equals_linter()

Details

Similar reasoning applies for class(x) %in% "character”.

Tags

best_practices, consistency, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'is_Im <- class(x) == "1m""',
linters = class_equals_linter()

)

lint(

text = "if ("1Im" %in% class(x)) is_lm <- TRUE',
linters = class_equals_linter()

)

okay

lint(
text = 'is_lm <- inherits(x, "1Im")"',
linters = class_equals_linter()

)

lint(

text = 'if (inherits(x, "lm")) is_lm <- TRUE',
linters = class_equals_linter()

clear_cache 21

clear_cache Clear the lintr cache

Description

Clear the lintr cache

Usage

clear_cache(file = NULL, path = NULL)

Arguments
file filename whose cache to clear. If you pass NULL, it will delete all of the caches.
path directory to store caches. Reads option ’lintr.cache_directory’ as the default.
Value

0 for success, 1 for failure, invisibly.

commas_linter Commas linter

Description

Check that all commas are followed by spaces, but do not have spaces before them.

Usage

commas_linter()

Tags

default, readability, style

See Also

* linters for a complete list of linters available in lintr.

e https://style.tidyverse.org/syntax.html#commas

https://style.tidyverse.org/syntax.html#commas

22 commented_code_linter

Examples

will produce lints

lint(
text = "switch(op , x = foo, y = bar)",
linters = commas_linter()

)

lint(
text = "mean(x,trim = @.2,na.rm = TRUE)",
linters = commas_linter()

)

lint(
text = "x[,, drop=TRUE]",
linters = commas_linter()

)

okay

lint(
text = "switch(op, x = foo, y = bar)",
linters = commas_linter()

)

lint(
text = "switch(op, x =, y = bar)”,
linters = commas_linter()

)

lint(

text = "mean(x, trim = 0.2, na.rm = TRUE)",
linters = commas_linter()

)

lint(
text = "a[1, , 2, , 31",
linters = commas_linter()

commented_code_linter Commented code linter

Description

Check that there is no commented code outside roxygen blocks.

Usage

commented_code_linter()

Tags

best_practices, default, readability, style

common_mistakes_linters

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "# x <- 1",
linters = commented_code_linter()

)

lint(
text = "x <- f() # g()",
linters = commented_code_linter()

)

lint(
text = "x +y # + z[1, 2]",
linters = commented_code_linter()

)

okay

lint(
text = "x <= 1; x <= fQ); x +y",
linters = commented_code_linter()

)

lint(
text = "#' x <= 1",
linters = commented_code_linter()

23

common_mistakes_linters
Common mistake linters

Description

Linters highlighting common mistakes, such as duplicate arguments.

Linters
The following linters are tagged with ’common_mistakes’:

e duplicate_argument_linter
e equals_na_linter

* missing_argument_linter

e missing_package_linter

* redundant_equals_linter

e sprintf_linter

e unused_import_linter

24 condition_message_linter

See Also

linters for a complete list of linters available in lintr.

condition_message_linter
Block usage of paste() and paste@() with messaging functions us-
ing ...

Description
This linter discourages combining condition functions like stop () with string concatenation func-
tions paste() and paste@(). This is because

Usage

condition_message_linter()

Details

* stop(paste@(...)) is redundant as it is exactly equivalent to stop(...)
* stop(paste(...)) is similarly equivalent to stop(...) with separators (see examples)

The same applies to the other default condition functions as well, i.e., warning(), message(), and
packageStartupMessage().
Tags

best_practices, consistency

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'stop(paste(”a string”, "another"))',
linters = condition_message_linter()

)

lint(
text = 'warning(paste@(”a string”, " another”))',
linters = condition_message_linter()

)

okay

lint(

n

text = 'stop("a string”, another”) "',
linters = condition_message_linter()

)

lint(

configurable_linters

n

text = 'warning("a string”, another”) "',
linters = condition_message_linter()

)

lint(
text = 'warning(paste("”a string”, "another”, sep = "-"))',
linters = condition_message_linter()

configurable_linters Configurable linters

Description

Generic linters which support custom configuration to your needs.

Linters
The following linters are tagged with ’configurable’:

e absolute_path_linter

* assignment_linter

* backport_linter

e brace_linter

e conjunct_test_linter

e cyclocomp_linter

e duplicate_argument_linter
e implicit_assignment_linter
e implicit_integer_linter
e indentation_linter

e infix_spaces_linter

e line_length_linter

* missing_argument_linter
* namespace_linter

* nonportable_path_linter
e object_length_linter

* object_name_linter

e object_usage_linter

e paste_linter

e quotes_linter

* redundant_ifelse_linter
e semicolon_linter

e string_boundary_linter

e todo_comment_linter

26 conjunct_test_linter

e trailing_whitespace_linter

e undesirable_function_linter

e undesirable_operator_linter

* unnecessary_concatenation_linter

e unused_import_linter

See Also

linters for a complete list of linters available in lintr.

conjunct_test_linter Force && conditions in expect_true() and expect_false() to be
written separately

Description

For readability of test outputs, testing only one thing per call to testthat::expect_true() is
preferable, i.e., expect_true(A); expect_true(B) is better than expect_true(A &&B), and
expect_false(A); expect_false(B) is better than expect_false(A || B).

Usage

conjunct_test_linter(allow_named_stopifnot = TRUE)

Arguments
allow_named_stopifnot
Logical, TRUE by default. If FALSE, "named" calls to stopifnot(), available
since R 4.0.0 to provide helpful messages for test failures, are also linted.

Details

Similar reasoning applies to && usage inside stopifnot() and assertthat: :assert_that() calls.

Tags

best_practices, configurable, package_development, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "expect_true(x && y)",
linters = conjunct_test_linter()

)

lint(
text = "expect_false(x || (y && z))",

consecutive_assertion_linter 27

linters = conjunct_test_linter()

lint(
text = "stopifnot('x must be a logical scalar' = length(x) == 1 && is.logical(x) && !is.na(x))",
linters = conjunct_test_linter(allow_named_stopifnot = FALSE)

)

okay

lint(
text = "expect_true(x || (y && z))",
linters = conjunct_test_linter()

)

lint(
text = 'stopifnot("x must be a logical scalar” = length(x) == 1 && is.logical(x) && !is.na(x))',
linters = conjunct_test_linter(allow_named_stopifnot = TRUE)

consecutive_assertion_linter
Force consecutive calls to assertions into just one when possible

Description
stopifnot() accepts any number of tests, so sequences like stopifnot(x); stopifnot(y) are
redundant. Ditto for tests using assertthat: :assert_that() without specifying msg=.

Usage

consecutive_assertion_linter()

Tags

consistency, readability, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "stopifnot(x); stopifnot(y)”,
linters = consecutive_assertion_linter()

lint(
text = "assert_that(x); assert_that(y)",
linters = consecutive_assertion_linter()

28

okay
lint(

text = "stopifnot(x, y)",

linters

lint(

text = 'assert_that(x, msg = "Bad x!"); assert_that(y)',

linters

consecutive_assertion_linter()

consecutive_assertion_linter()

consistency_linters

consistency_linters Consistency linters

Description

Linters checking enforcing a consistent alternative if there are multiple syntactically valid ways to
write something.

Linters

The following linters are tagged with ’consistency’:

e assignment_linter

e class_equals_linter

e condition_message_linter

e consecutive_assertion_linter

e function_argument_linter

e implicit_integer_linter

e inner_combine_linter

e is_numeric_linter

e literal_coercion_linter

e numeric_leading_zero_linter

* object_name_linter

e paste_linter

e quotes_linter

e redundant_ifelse_linter

* seq_linter

e system_file_linter

e T_and_F_symbol_linter

* whitespace_linter

See Also

linters for a complete list of linters available in lintr.

correctness_linters

29

correctness_linters Correctness linters

Description

Linters highlighting possible programming mistakes, such as unused variables.

Linters
The following linters are tagged with ’correctness’:

e duplicate_argument_linter
e equals_na_linter

* missing_argument_linter

* namespace_linter

e object_usage_linter

e package_hooks_linter

e sprintf_linter

See Also

linters for a complete list of linters available in lintr.

cyclocomp_linter Cyclomatic complexity linter

Description

Check for overly complicated expressions. See cyclocomp

Usage

cyclocomp_linter(complexity_limit = 15L)

Arguments

complexity_limit

::cyclocomp().

Maximum cyclomatic complexity, default 15. Expressions more complex than
this are linted. See cyclocomp: :cyclocomp().

Tags

best_practices, configurable, default, readability, style

See Also

linters for a complete list of linters available in lintr.

30 default_linters

Examples

will produce lints
lint(
text = "if (TRUE) 1 else 2",
linters = cyclocomp_linter(complexity_limit = 1L)

)

okay
lint(
text = "if (TRUE) 1 else 2",
linters = cyclocomp_linter(complexity_limit = 2L)

)

default_linters Default linters

Description

List of default linters for 1int(). Use linters_with_defaults() to customize it. Most of the
default linters are based on the tidyverse style guide.

The set of default linters is as follows (any parameterized linters, e.g., line_length_linter use
their default argument(s), see ?<linter_name> for details):

Usage

default_linters

Format

An object of class 1ist of length 25.

Linters
The following linters are tagged with ’default’:

e assignment_linter

e brace_linter

e commas_linter

e commented_code_linter
e cyclocomp_linter

e equals_na_linter

e function_left_parentheses_linter
e indentation_linter

e infix_spaces_linter

e line_length_linter

* object_length_linter

e object_name_linter

https://style.tidyverse.org/

default_settings 31

* object_usage_linter

e paren_body_linter

e pipe_continuation_linter

e quotes_linter

e semicolon_linter

e seq_linter

* spaces_inside_linter

* spaces_left_parentheses_linter
e T_and_F_symbol_linter

e trailing_blank_lines_linter
e trailing_whitespace_linter
e vector_logic_linter

e whitespace_linter

See Also

linters for a complete list of linters available in lintr.

default_settings Default lintr settings

Description
The default settings consist of

e linters: alist of default linters (see default_linters())
* encoding: the character encoding assumed for the file
* exclude: pattern used to exclude a line of code

* exclude_start, exclude_end: patterns used to mark start and end of the code block to
exclude

e exclude_linter, exclude_linter_sep: patterns used to exclude linters

e exclusions:a list of files to exclude

* cache_directory: location of cache directory

* comment_token: a GitHub token character

e comment_bot: decides if lintr comment bot on GitHub can comment on commits

e error_on_lint: decides if error should be produced when any lints are found

Usage

default_settings

Format

An object of class 1ist of length 12.

32 deprecated_linters

See Also

read_settings(), default_linters

Examples

available settings
names(default_settings)

linters included by default
names(default_settings$linters)

default values for a few of the other settings
default_settings[c(

"encoding”,

"exclude",

"exclude_start”,

"exclude_end”,

"exclude_linter”,

"exclude_linter_sep”,

"exclusions”,

"error_on_lint"

)]

deprecated_linters Deprecated linters

Description

Linters that are deprecated and provided for backwards compatibility only. These linters will be
excluded from linters_with_tags() by default.

Linters

The following linters are tagged with ’deprecated’:

e closed_curly_linter

e consecutive_stopifnot_linter
* no_tab_linter

e open_curly_linter

e paren_brace_linter

e semicolon_terminator_linter
e single_quotes_linter

e unneeded_concatenation_linter

See Also

linters for a complete list of linters available in lintr.

duplicate_argument_linter 33

duplicate_argument_linter
Duplicate argument linter

Description

Check for duplicate arguments in function calls. Some cases are run-time errors (e.g. mean(x =
1:5, x = 2:3)), otherwise this linter is used to discourage explicitly providing duplicate names to
objects (e.g. c(a=1, a=2)). Duplicate-named objects are hard to work with programmatically
and should typically be avoided.

Usage
duplicate_argument_linter(except = c("mutate”, "transmute"))
Arguments
except A character vector of function names as exceptions. Defaults to functions that al-
low sequential updates to variables, currently dplyr: :mutate() and dplyr::transmute().
Tags

common_mistakes, configurable, correctness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "list(x =1, x = 2)",
linters = duplicate_argument_linter()

)

lint(
text = "fun(arg = 1, arg = 2)",
linters = duplicate_argument_linter()

)
okay
lint(
text = "list(x =1, x = 2)",
linters = duplicate_argument_linter(except = "list")
)
lint(

text = "df %>% dplyr::mutate(x = a + b, x = x + d)",
linters = duplicate_argument_linter()

34

efficiency_linters

efficiency_linters

Efficiency linters

Description

Linters highlighting code efficiency problems, such as unnecessary function calls.

Linters

The following linters are tagged with ’efficiency’:

See Also

linters for a complete list of linters available in lintr.

any_duplicated_linter
any_is_na_linter
boolean_arithmetic_linter
fixed_regex_linter
ifelse_censor_linter
inner_combine_linter
lengths_linter
literal_coercion_linter
matrix_apply_linter
nested_ifelse_linter
outer_negation_linter
redundant_equals_linter
redundant_ifelse_linter
regex_subset_linter
routine_registration_linter
seq_linter

sort_linter
string_boundary_linter
undesirable_function_linter

undesirable_operator_linter

unnecessary_concatenation_linter

unnecessary_lambda_linter

vector_logic_linter

empty_assignment_linter 35

empty_assignment_linter
Block assignment of {3}

Description

Assignment of {3} is the same as assignment of NULL; use the latter for clarity. Closely related:
unnecessary_concatenation_linter().

Usage

empty_assignment_linter()

Tags

best_practices, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "x <- {}",
linters = empty_assignment_linter()

)
writeLines("x = {\n}")
lint(
text = "x = {\n}",
linters = empty_assignment_linter()
)
okay
lint(

text = "x <- { 3 + 4 }",
linters = empty_assignment_linter()

)

lint(
text = "x <- NULL",
linters = empty_assignment_linter()

36 equals_na_linter

equals_na_linter Equality check with NA linter

Description

Check for x == NA and x !=NA. Such usage is almost surely incorrect — checks for missing values
should be done with is.na().

Usage

equals_na_linter()

Tags

common_mistakes, correctness, default, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(

text = "x == NA",

linters = equals_na_linter()
)
lint(

text = "x != NA",
linters = equals_na_linter()

)
okay
lint(
text = "is.na(x)",
linters = equals_na_linter()
)
lint(
text = "lis.na(x)",

linters = equals_na_linter()

exclude

37

exclude Exclude lines or files from linting

Description

Exclude lines or files from linting

Usage

exclude(lints, exclusions = settings$exclusions, linter_names = NULL, ...)
Arguments

lints that need to be filtered.

exclusions manually specified exclusions

linter_names character vector of names of the active linters, used for parsing inline exclusions.

Details

additional arguments passed to parse_exclusions()

Exclusions can be specified in three different ways.

1.

single line in the source file. default: # nolint, possibly followed by a listing of linters to
exclude. If the listing is missing, all linters are excluded on that line. The default listing format
is# nolint: linter_name, linter2_name.. There may not be anything between the colon
and the line exclusion tag and the listing must be terminated with a full stop (.) for the linter
list to be respected.

. line range in the source file. default: # nolint start, # nolint end. # nolint start

accepts linter lists in the same form as # nolint.

. exclusions parameter, a named list of files with named lists of linters and lines to exclude them

on, a named list of the files and lines to exclude, or just the filenames if you want to exclude
the entire file, or the directory names if you want to exclude all files in a directory.

executing_linters Code executing linters

Description

Linters that evaluate parts of the linted code, such as loading referenced packages. These linters
should not be used with untrusted code, and may need dependencies of the linted package or project
to be available in order to function correctly.

Linters

The following linters are tagged with ’executing’:

namespace_linter
object_length_linter
object_name_linter
object_usage_linter
unused_import_linter

38 expect_comparison_linter

See Also

linters for a complete list of linters available in lintr.

expect_comparison_linter
Require usage of expect_gt(x, y) over expect_true(x >y) (and
similar)

Description

testthat: :expect_gt(), testthat: :expect_gte(), testthat::expect_1t(), testthat::expect_lte(),
and testthat: :expect_equal() exist specifically for testing comparisons between two objects.

testthat: :expect_true() can also be used for such tests, but it is better to use the tailored func-

tion instead.

Usage

expect_comparison_linter()

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "expect_true(x > y)",
linters = expect_comparison_linter()

)
lint(
text = "expect_true(x <= y)",
linters = expect_comparison_linter()
)
lint(

text = "expect_true(x == (y == 2))",
linters = expect_comparison_linter()

okay
lint(
text = "expect_gt(x, y)",
linters = expect_comparison_linter()

)

lint(
text = "expect_lte(x, y)",

expect_identical_linter 39

linters = expect_comparison_linter()

)

lint(
text = "expect_identical(x, y == 2)",
linters = expect_comparison_linter()

)

lint(
text = "expect_true(x <y | x > y*2)",
linters = expect_comparison_linter()

)

expect_identical_linter
Require usage of expect_identical(x, y) where appropriate

Description

This linter enforces the usage of testthat::expect_identical() as the default expectation for
comparisons in a testthat suite. expect_true(identical(x, y)) is an equivalent but unadvised

method of the same test. Further, testthat: :expect_equal () should only be used when expect_identical()
is inappropriate, i.e., when x and y need only be numerically equivalent instead of fully identi-

cal (in which case, provide the tolerance= argument to expect_equal() explicitly). This also

applies when it’s inconvenient to check full equality (e.g., names can be ignored, in which case
ignore_attr = "names"” should be supplied to expect_equal () (or, for 2nd edition, check.attributes

= FALSE).

Usage

expect_identical_linter()

Exceptions
The linter allows expect_equal() in three circumstances:

1. A named argument is set (e.g. ignore_attr or tolerance)

2. Comparison is made to an explicit decimal, e.g. expect_equal(x, 1.0) (implicitly setting
tolerance)

3. ... ispassed (wrapper functions which might set arguments such as ignore_attr or tolerance)

Tags

package_development

See Also

linters for a complete list of linters available in lintr.

40 expect_length_linter

Examples

will produce lints

lint(
text = "expect_equal(x, y)",
linters = expect_identical_linter()

)

lint(
text = "expect_true(identical(x, y))",
linters = expect_identical_linter()

)

okay

lint(
text = "expect_identical(x, y)",
linters = expect_identical_linter()

)

lint(
text = "expect_equal(x, y, check.attributes = FALSE)",
linters = expect_identical_linter()

)

lint(
text = "expect_equal(x, y, tolerance = 1e-6)",
linters = expect_identical_linter()

expect_length_linter Require usage of expect_length(x, n) over
expect_equal (length(x), n)

Description
testthat: :expect_length() exists specifically for testing the length() of an object. testthat: :expect_equal()
can also be used for such tests, but it is better to use the tailored function instead.

Usage

expect_length_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

expect_lint

Examples

41

will produce lints

lint(

text = "expect_equal(length(x), 2L)",
linters = expect_length_linter()

)

okay
lint(

text = "expect_length(x, 2L)",
linters = expect_length_linter()

expect_lint

Lint expectation

Description

This is an expectation function to test that the lints produced by 1int satisfy a number of checks.

Usage
expect_lint(content, checks, ..., file = NULL, language = "en")
Arguments
content a character vector for the file content to be linted, each vector element represent-
ing a line of text.
checks checks to be performed:
NULL check that no lints are returned.
single string or regex object check that the single lint returned has a matching
message.
named list check that the single lint returned has fields that match. Accepted
fields are the same as those taken by Lint().
list of named lists for each of the multiple lints returned, check that it matches
the checks in the corresponding named list (as described in the point above).
Named vectors are also accepted instead of named lists, but this is a compatibil-
ity feature that is not recommended for new code.
arguments passed to 1int (), e.g. the linters or cache to use.
file if not NULL, read content from the specified file rather than from content.
language temporarily override Rs LANGUAGE envvar, controlling localization of base R er-
ror messages. This makes testing them reproducible on all systems irrespective
of their native R language setting.
Value

NULL, invisibly.

42 expect_named_linter

Examples

no expected lint
expect_lint("a"”, NULL, trailing_blank_lines_linter())

one expected lint
expect_lint("a\n", "superfluous”, trailing_blank_lines_linter())

expect_lint("a\n", list(message = "superfluous”, line_number = 2), trailing_blank_lines_linter())

several expected lints

expect_lint("a\n\n", list("superfluous”, "superfluous"”), trailing_blank_lines_linter())
expect_lint(
"a\n\n",
list(
list(message = "superfluous”, line_number = 2),
list(message = "superfluous”, line_number = 3)
) ’
trailing_blank_lines_linter()
)
expect_lint_free Test that the package is lint free
Description

This function is a thin wrapper around lint_package that simply tests there are no lints in the pack-
age. It can be used to ensure that your tests fail if the package contains lints.

Usage

expect_lint_free(...)

Arguments
arguments passed to lint_package ()
expect_named_linter Require usage of expect_named(x, n) over
expect_equal (names(x), n)
Description

testthat: :expect_named() exists specifically for testing the names () of an object. testthat: :expect_equal()
can also be used for such tests, but it is better to use the tailored function instead.

Usage

expect_named_linter()

Tags

best_practices, package_development, readability

expect_not_linter 43
See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'expect_equal(names(x), "a")',
linters = expect_named_linter()

)

okay

lint(
text = 'expect_named(x, "a")',
linters = expect_named_linter()

)

lint(
text = 'expect_equal(colnames(x), "a")',
linters = expect_named_linter()

)

lint(
text = 'expect_equal(dimnames(x), "a")',
linters = expect_named_linter()

)

expect_not_linter Require usage of expect_false(x) over expect_true(!x)
Description

testthat: :expect_false() exists specifically for testing that an output is FALSE. testthat: :expect_true()
can also be used for such tests by negating the output, but it is better to use the tailored function
instead. The reverse is also true — use expect_false(A) instead of expect_true(!A).

Usage

expect_not_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

44 expect_null_linter

Examples

will produce lints

lint(
text = "expect_true(!x)",
linters = expect_not_linter()
)
okay
lint(

text = "expect_false(x)",
linters = expect_not_linter()

expect_null_linter Require usage of expect_null for checking NULL

Description

Require usage of expect_null(x) over expect_equal(x, NULL) and similar usages.

Usage

expect_null_linter()

Details

testthat: :expect_null() exists specifically for testing for NULL objects. testthat: :expect_equal(),
testthat: :expect_identical(), and testthat::expect_true() can also be used for such
tests, but it is better to use the tailored function instead.

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "expect_equal(x, NULL)",
linters = expect_null_linter()

)

lint(
text = "expect_identical(x, NULL)",
linters = expect_null_linter()

)

lint(

expect_s3_class_linter 45

text = "expect_true(is.null(x))",
linters = expect_null_linter()

okay

lint(
text = "expect_null(x)",
linters = expect_null_linter()

expect_s3_class_linter
Require usage of expect_s3_class()

Description

testthat: :expect_s3_class() exists specifically for testing the class of S3 objects. testthat: :expect_equal(),
testthat::expect_identical(), and testthat::expect_true() can also be used for such
tests, but it is better to use the tailored function instead.

Usage

expect_s3_class_linter()

Tags

best_practices, package_development

See Also

* linters for a complete list of linters available in lintr.

e expect_s4_class_linter()

Examples

will produce lints

lint(
text = 'expect_equal(class(x), "data.frame")',
linters = expect_s3_class_linter()

)

lint(
text = 'expect_equal(class(x), "numeric"”)’',
linters = expect_s3_class_linter()

)

okay

lint(
text = 'expect_s3_class(x, "data.frame")',

linters = expect_s3_class_linter()

46 expect_s4_class_linter

lint(
text = 'expect_type(x, "double")',
linters = expect_s3_class_linter()

expect_s4_class_linter
Require usage of expect_s4_class(x, k) over expect_true(is(x,

K))

Description

testthat: :expect_s4_class() exists specifically for testing the class of S4 objects. testthat: :expect_true()
can also be used for such tests, but it is better to use the tailored function instead.
Usage

expect_s4_class_linter()

Tags

best_practices, package_development

See Also

* linters for a complete list of linters available in lintr.

e expect_s3_class_linter()

Examples

will produce lints

lint(
text = 'expect_true(is(x, "Matrix"))',
linters = expect_s4_class_linter()

)

okay

lint(
text = 'expect_s4_class(x, "Matrix")',

linters = expect_s4_class_linter()

expect_true_false_linter 47

expect_true_false_linter
Require usage of expect_true(x) over expect_equal(x, TRUE)

Description

testthat::expect_true() and testthat: :expect_false() exist specifically for testing the TRUE/FALSE
value of an object. testthat: :expect_equal() and testthat::expect_identical() can also
be used for such tests, but it is better to use the tailored function instead.

Usage

expect_true_false_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "expect_equal(x, TRUE)",
linters = expect_true_false_linter()

)

lint(
text = "expect_equal(x, FALSE)",
linters = expect_true_false_linter()

)
okay
lint(
text = "expect_true(x)",
linters = expect_true_false_linter()
)
lint(

text = "expect_false(x)",
linters = expect_true_false_linter()

48 extraction_operator_linter

expect_type_linter Require usage of expect_type(x, type) over
expect_equal (typeof(x), type)

Description

testthat: :expect_type() exists specifically for testing the storage type of objects. testthat: :expect_equal(),
testthat::expect_identical(), and testthat::expect_true() can also be used for such
tests, but it is better to use the tailored function instead.

Usage

expect_type_linter()

Tags

best_practices, package_development

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'expect_equal(typeof(x), "double")',
linters = expect_type_linter()

)

lint(
text = 'expect_identical(typeof(x), "double")',
linters = expect_type_linter()

)

okay

lint(
text = 'expect_type(x, "double")',
linters = expect_type_linter()

extraction_operator_linter
Extraction operator linter

Description

Check that the [[operator is used when extracting a single element from an object, not [(subset-
ting) nor $ (interactive use).

extraction_operator._linter 49

Usage

extraction_operator_linter()

Details

There are three subsetting operators in R ([[, [, and $) and they interact differently with different
data structures (atomic vector, list, data frame, etc.).

Here are a few reasons to prefer the [[operator over [or $ when you want to extract an element
from a data frame or a list:

* Subsetting a list with [always returns a smaller list, while [[returns the list element.

* Subsetting a named atomic vector with [returns a named vector, while [[returns the vector
element.

» Subsetting a data frame (but not tibble) with [is type unstable; it can return a vector or a data
frame. [[, on the other hand, always returns a vector.

* For a data frame (but not tibble), $ does partial matching (e.g. df$a will subset df$abc),
which can be a source of bugs. [[doesn’t do partial matching.

For data frames (and tibbles), irrespective of the size, the [[operator is slower than $. For lists,
however, the reverse is true.

Tags

best_practices, style

References

* Subsetting chapter from Advanced R (Wickham, 2019).

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(

text = 'iris["Species”"]',

linters = extraction_operator_linter()
)
lint(

text = "iris$Species”,

linters = extraction_operator_linter()
)
okay
lint(

text = 'iris[["Species"]1]"',
linters = extraction_operator_linter()

https://adv-r.hadley.nz/subsetting.html

50 fixed_regex_linter

fixed_regex_linter Require usage of fixed=TRUE in regular expressions where appropri-
ate

Description
Invoking a regular expression engine is overkill for cases when the search pattern only involves
static patterns.

Usage

fixed_regex_linter()

Details

NB: for stringr functions, that means wrapping the pattern in stringr::fixed().

NB: this linter is likely not able to distinguish every possible case when a fixed regular expression
is preferable, rather it seeks to identify likely cases. It should never report false positives, however;
please report false positives as an error.

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

code_lines <- 'gsub("\\\\.", "", x)'
writeLines(code_lines)
lint(

text = code_lines,
linters = fixed_regex_linter()

)

lint(
text = 'grepl(”al*]b", x)',
linters = fixed_regex_linter()

)

code_lines <- 'stringr::str_subset(x, "\\\\$")'
writeLines(code_lines)
lint(

text = code_lines,

linters = fixed_regex_linter()

)

lint(
text = 'grepl("Munich”, address)',
linters = fixed_regex_linter()

for_loop_index_linter 51

)

okay

code_lines <- 'gsub("\\\\.", "" x, fixed = TRUE)'
writeLines(code_lines)

lint(

text = code_lines,
linters = fixed_regex_linter()

)

lint(
text = 'grepl("axb", x, fixed = TRUE)',
linters = fixed_regex_linter()

)

lint(
text = 'stringr::str_subset(x, stringr::fixed("$"))"',
linters = fixed_regex_linter()

)

lint(
text = 'grepl("Munich”, address, fixed = TRUE)',
linters = fixed_regex_linter()

for_loop_index_linter Block usage of for loops directly overwriting the indexing variable

Description

for (x in x) is a poor choice of indexing variable. This overwrites x in the calling scope and is
confusing to read.
Usage

for_loop_index_linter()

Tags

best_practices, readability, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "for (x in x) { TRUE }",
linters = for_loop_index_linter()

52 function_argument_linter

lint(
text = "for (x in foo(x, y)) { TRUE }",
linters = for_loop_index_linter()

)

okay

lint(
text = "for (xi in x) { TRUE }",
linters = for_loop_index_linter()

)

lint(
text = "for (col in DF$col) { TRUE }",
linters = for_loop_index_linter()

)

function_argument_linter
Function argument linter

Description

Check that arguments with defaults come last in all function declarations, as per the tidyverse design
guide.

Changing the argument order can be a breaking change. An alternative to changing the argument
order is to instead set the default for such arguments to NULL.
Usage

function_argument_linter()

Tags

best_practices, consistency, style

See Also

* linters for a complete list of linters available in lintr.

* https://design.tidyverse.org/args-data-details.html

Examples

will produce lints

lint(
text = "function(y =1, z = 2, x) {}",
linters = function_argument_linter()

)

lint(
text = "function(x, y, z =1, ..., w) {}",
linters = function_argument_linter()

https://design.tidyverse.org/args-data-details.html

function_left_parentheses_linter 53

okay

lint(
text = "function(x, y =1, z = 2) {}",
linters = function_argument_linter()

)

lint(
text = "function(x, y, w, z =1, ...) {}",
linters = function_argument_linter()

)

lint(

text = "function(y = 1, z = 2, x = NULL) {}",
linters = function_argument_linter()

)

lint(
text = "function(x, y, z =1, ..., w = NULL) {}",
linters = function_argument_linter()

)

function_left_parentheses_linter
Function left parentheses linter

Description
Check that all left parentheses in a function call do not have spaces before them (e.g. mean (1:3)).
Although this is syntactically valid, it makes the code difficult to read.

Usage

function_left_parentheses_linter()

Details

Exceptions are made for control flow functions (if, for, etc.).

Tags

default, readability, style

See Also

* linters for a complete list of linters available in lintr.
e https://style.tidyverse.org/syntax.html#parentheses

* spaces_left_parentheses_linter()

https://style.tidyverse.org/syntax.html#parentheses

54

Examples

will produce lints

lint(

text = "mean (x)",

linters = function_left_parentheses_linter()
)
lint(

text = "stats::sd(c (x, y, z))",

linters = function_left_parentheses_linter()
)
okay
lint(

text = "mean(x)",

linters = function_left_parentheses_linter()
)
lint(

text = "stats::sd(c(x, y, 2))",

linters = function_left_parentheses_linter()
)
lint(

text = "foo <- function(x) (x + 1)",

linters = function_left_parentheses_linter()
)

function_return_linter

function_return_linter

Lint common mistakes/style issues cropping up from return statements

Description

return(x <- ...) is either distracting (because x is ignored), or confusing (because assigning to x

has some side effect that is muddled by the dual-purpose expression).

Usage

function_

Tags

return_linter()

best_practices, readability

See Also

linters for a complete list of linters available in lintr.

get_r_string

Examples

will produce lints

lint(
text = "foo <- function(x) return(y <- x + 1)",
linters = function_return_linter()
)
lint(
text = "foo <- function(x) return(x <<- x + 1)",
linters = function_return_linter()
)
writeLines("e <- new.env() \nfoo <- function(x) return(e$val <- x + 1)")
lint(
text = "e <- new.env() \nfoo <- function(x) return(e$val <- x + 1)",
linters = function_return_linter()
)
okay
lint(
text = "foo <- function(x) return(x + 1)",
linters = function_return_linter()
)

n

code_lines <-

foo <- function(x) {
X <<= x + 1
return(x)

n

lint(
text = code_lines,
linters = function_return_linter()

n

code_lines <-

e <- new.env()

foo <- function(x) {
e$val <- x + 1
return(e$val)

}

n

writeLines(code_lines)
lint(
text = code_lines,
linters = function_return_linter()

get_r_string Extract text from STR_CONST nodes

56 get_source_expressions

Description

Convert STR_CONST text () values into R strings. This is useful to account for arbitrary character
literals valid since R 4.0, e.g. R"------ [hello]------ ", which is parsed in R as "hello”. It
is quite cumbersome to write XPaths allowing for strings like this, so whenever your linter logic
requires testing a STR_CONST node’s value, use this function. NB: this is also properly vectorized
on s, and accepts a variety of inputs. Empty inputs will become NA outputs, which helps ensure that
length(get_r_string(s)) == length(s).

Usage
get_r_string(s, xpath = NULL)

Arguments
s An input string or strings. If s is an xml_node or xml_nodeset and xpath is
NULL, extract its string value with xm12::xml_text(). If s is an xml_node or
xml_nodeset and xpath is specified, it is extracted with xm12: : xml_find_chr().
xpath An XPath, passed on to xm12: : xml_find_chr() after wrapping with string().
Examples

tmp <- withr::local_tempfile(lines = "c('a', 'b')")

expr_as_xml <- get_source_expressions(tmp)$expressions[[1L]]1$xml_parsed_content
writeLines(as.character(expr_as_xml))

get_r_string(expr_as_xml, "expr[2]") # "a"
get_r_string(expr_as_xml, "expr[3]1") # "b"

more importantly, extract strings under R>=4 raw strings

tmp4.0 <- withr::local_tempfile(lines = "c(R'(a\\b)', R'--[a\\\"\'\"\\b]--')")
expr_as_xml4.0 <- get_source_expressions(tmp4.0)$expressions[[1L]]$xml_parsed_content
writeLines(as.character(expr_as_xml4.0))

get_r_string(expr_as_xml4.0, "expr[2]") # "a\b"

get_r_string(expr_as_xml4.0, "expr[3]1") # "a\\"'\"\b"

get_source_expressions
Parsed sourced file from a filename

Description

This object is given as input to each linter.

Usage

get_source_expressions(filename, lines = NULL)

Arguments

filename the file to be parsed.
lines a character vector of lines. If NULL, then filename will be read.

get_source_expressions 57

Details

The file is read using the encoding setting. This setting is found by taking the first valid result from
the following locations

The encoding key from the usual lintr configuration settings.

The Encoding field from a Package DESCRIPTION file in a parent directory.

1.
2.
3. The Encoding field from an R Project .Rproj file in a parent directory.
4. "UTF-8" as a fallback.

Value

A list with three components:

expressions alist of n+1 objects. The first n elements correspond to each expression in filename,
and consist of a list of 9 elements:

filename (character)
line (integer) the line in filename where this expression begins
column (integer) the column in filename where this expression begins

lines (named character) vector of all lines spanned by this expression, named with the
line number corresponding to filename

parsed_content (data.frame) as given by utils::getParseData() for this expres-
sion

xml_parsed_content (xml_document) the XML parse tree of this expression as given
by xmlparsedata: :xml_parse_data()

content (character) the same as lines as a single string (not split across lines)
(Deprecated) find_line (function) a function for returning lines in this expression
(Deprecated) find_column (function) a similar function for columns

The final element of expressions is a list corresponding to the full file consisting of 6 ele-
ments:

L]

L]

filename (character)

file_lines (character) the readLines() output for this file

content (character) for .R files, the same as file_lines; for .Rmd or .qmd scripts,
this is the extracted R source code (as text)

full_parsed_content (data.frame) as given by utils: :getParseData() for the full
content

full_xml_parsed_content (xml_document) the XML parse tree of all expressions as
given by xmlparsedata: :xml_parse_data()

terminal_newline (logical) records whether filename has a terminal newline (as de-
termined by readLines() producing a corresponding warning)

error A Lint object describing any parsing error.

lines The readLines() output for this file.

Examples

tmp <- withr::local_tempfile(lines = c("x <= 1", "y <= x + 1"))
get_source_expressions(tmp)

58

ids_with_token

ids_with_token

Get parsed IDs by token

Description

Gets the source IDs (row indices) corresponding to given token.

Usage

ids_with_token(source_expression, value, fun = ==, source_file = NULL)

with_id(source_expression, id, source_file)

Arguments

source_expression

value

fun

source_file
id

Value

A list of source expressions, the result of a call to get_source_expressions(),
for the desired filename.

Character. String corresponding to the token to search for. For example:
« "SYMBOL"
¢ "FUNCTION"
* "EQ_FORMALS"
o g
o ("
For additional flexibility, a function to search for in the token column of parsed_content.
Typically == or %in%.
(DEPRECATED) Same as source_expression. Will be removed.

Integer. The index corresponding to the desired row of parsed_content.

ids_with_token: The indices of the parsed_content data frame entry of the list of source ex-
pressions. Indices correspond to the rows where fun evaluates to TRUE for the value in the foken

column.

with_id: A data frame corresponding to the row(s) specified in id.

Functions

e with_id(): Return the row of the parsed_content entry of the [get_source_expressions]()
object. Typically used in conjunction with ids_with_token to iterate over rows containing
desired tokens.

Examples

tmp <- withr::local_tempfile(lines = c("x <= 1", "y <= x + 1"))
source_exprs <- get_source_expressions(tmp)
ids_with_token(source_exprs$expressions[[1L]], value = "SYMBOL")
with_id(source_exprs$expressions[[1L]], 2L)

ifelse_censor_linter 59

ifelse_censor_linter Block usage of ifelse() where pmin() or pmax() is more appropri-
ate

Description

ifelse(x >M, M, x) is the same as pmin(x, M), but harder to read and requires several passes over
the vector.

Usage

ifelse_censor_linter()

Details

The same goes for other similar ways to censor a vector, e.g. ifelse(x <=M, x, M) is pmin(x, M),
ifelse(x <m, m, x) is pmax(x, m), and ifelse(x >=m, x, m) is pmax(x, m).

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "ifelse(5:1 < pi, 5:1, pi)”,
linters = ifelse_censor_linter()

)

lint(
text = "ifelse(x > 0, x, 0)",
linters = ifelse_censor_linter()

)

okay
lint(
text = "pmin(5:1, pi)”,
linters = ifelse_censor_linter()

)

lint(
text = "pmax(x, @)",
linters = ifelse_censor_linter()

)

60 implicit_assignment_linter

implicit_assignment_linter
Avoid implicit assignment in function calls

Description

Assigning inside function calls makes the code difficult to read, and should be avoided, except for
functions that capture side-effects (e.g. capture.output()).

Usage
implicit_assignment_linter(
except = c("bquote”, "expression”, "expr"”, "quo", "quos", "quote")
)
Arguments
except A character vector of functions to be excluded from linting.
Tags

best_practices, configurable, readability, style

See Also

* linters for a complete list of linters available in lintr.
* https://style.tidyverse.org/syntax.html#assignment

Examples

will produce lints
lint(
text = "if (x <- 1L) TRUE",
linters = implicit_assignment_linter()

)

lint(
text = "mean(x <- 1:4)",
linters = implicit_assignment_linter()

)

okay
writeLines("x <- 1L\nif (x) TRUE")
lint(
text = "x <- 1L\nif (x) TRUE",
linters = implicit_assignment_linter()

)

writeLines("x <- 1:4\nmean(x)")
lint(
text = "x <- 1:4\nmean(x)",
linters = implicit_assignment_linter()

https://style.tidyverse.org/syntax.html#assignment

implicit_integer_linter

61

implicit_integer_linter
Implicit integer linter

Description

Check that integers are explicitly typed using the form 1L instead of 1.

Usage

implicit_integer_linter(allow_colon = FALSE)

Arguments

allow_colon Logical, default FALSE. If TRUE, expressions involving :

gardless of whether the inputs are implicitly integers.

Tags

best_practices, configurable, consistency, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "x <= 1",
linters = implicit_integer_linter()

)
lint(
text = "x[2]",
linters = implicit_integer_linter()
)
lint(
text = "1:10",
linters = implicit_integer_linter()
)
okay
lint(

text = "x <- 1.0",
linters = implicit_integer_linter()

)

lint(
text = "x <- 1L",
linters = implicit_integer_linter()

won’t throw a lint re-

62 indentation_linter
lint(
text = "x[2L]",
linters = implicit_integer_linter()
)
lint(
text = "1:10",
linters = implicit_integer_linter(allow_colon = TRUE)
)
indentation_linter Check that indentation is consistent
Description

Check that indentation is consistent

Usage

indentation_linter(

indent = 2L,

hanging_indent_style = c("tidy"”, "always"”, "never"),
assignment_as_infix = TRUE

)

Arguments

indent

Number of spaces, that a code block should be indented by relative to its parent
code block. Used for multi-line code blocks ({ ... }), function calls ((...))
and extractions ([... 1,[[... 11). Defaults to 2.

hanging_indent_style

Indentation style for multi-line function calls with arguments in their first line.
Defaults to tidyverse style, i.e. a block indent is used if the function call ter-
minates with) on a separate line and a hanging indent if not. Note that func-
tion multi-line function calls without arguments on their first line will always
be expected to have block-indented arguments. If hanging_indent_style is
"tidy"”, multi-line function definitions are expected to be double-indented if
the first line of the function definition contains no arguments and the closing
parenthesis is not on its own line.

complies to any style
map (

X,

f,

additional_arg = 42
)

complies to "tidy" and "never”
map(x, f,

additional_arg = 42
)

indentation_linter 63

complies to "always”
map(x, f,

additional_arg = 42
)

complies to "tidy" and "always”
map(x, f,
additional_arg = 42)

complies to "never”
map(x, f,
additional_arg = 42)

complies to "tidy"
function(
a,
b) {
body
}

assignment_as_infix
Treat <- as a regular (i.e. left-associative) infix operator? This means, that infix
operators on the right hand side of an assignment do not trigger a second level
of indentation:

complies to any style
variable <- a %+%

b %+%

c

complies to assignment_as_infix = TRUE
variable <-

a %tk

b %+%

C

FALSE

complies to assignment_as_infix
variable <-
a %tk
b %+%
C

Tags

configurable, default, readability, style

See Also
* linters for a complete list of linters available in lintr.
* https://style.tidyverse.org/syntax.html#indenting

e https://style.tidyverse.org/functions.html#long-lines-1

https://style.tidyverse.org/syntax.html#indenting
https://style.tidyverse.org/functions.html#long-lines-1

64

Examples

will produce lints
code_lines <- "if (TRUE) {\n1 + 1\n}"
writeLines(code_lines)
lint(
text = code_lines,
linters = indentation_linter()

)

code_lines <- "if (TRUE) {\n 1 + 1\n}"
writeLines(code_lines)
lint(

text = code_lines,

linters = indentation_linter()

)

code_lines <- "map(x, f,\n additional_arg = 42\n)"
writeLines(code_lines)

lint(

text = code_lines,

linters = indentation_linter(hanging_indent_style = "always")
)

code_lines <- "map(x, f,\n additional_arg = 42)"
writeLines(code_lines)

lint(

text = code_lines,

linters = indentation_linter(hanging_indent_style = "never")
)
okay

code_lines <- "map(x, f,\n additional_arg = 42\n)"
writeLines(code_lines)
lint(

text = code_lines,

linters = indentation_linter()

)

code_lines <- "if (TRUE) {\n 1 + 1\n}"
writeLines(code_lines)
lint(

text = code_lines,

linters = indentation_linter(indent = 4)

infix_spaces_linter

infix_spaces_linter Infix spaces linter

Description

Check that infix operators are surrounded by spaces. Enforces the corresponding Tidyverse style
guide rule; see https://style.tidyverse.org/syntax.html#infix-operators

https://style.tidyverse.org/syntax.html#infix-operators

infix_spaces_linter 65

Usage

infix_spaces_linter(exclude_operators = NULL, allow_multiple_spaces = TRUE)

Arguments

exclude_operators
Character vector of operators to exclude from consideration for linting. Default

is to include the following "low-precedence" operators: +, -, ~, >, >=, <, <=, ==,
1=, & 88, |, ||, <-, :=, <<=, =>, ->> =/, %, and any infix operator (exclude
infixes by passing "%%"). Note that <-, :=, and <<- are included/excluded as a

group (indicated by passing "<-"), as are -> and ->> (viz, "->"), and that = for

assignment and for setting arguments in calls are treated the same.
allow_multiple_spaces

Logical, default TRUE. If FALSE, usage like x = 2 will also be linted; excluded by

default because such usage can sometimes be used for better code alignment, as

is allowed by the style guide.

Tags

configurable, default, readability, style

See Also

* linters for a complete list of linters available in lintr.

* https://style.tidyverse.org/syntax.html#infix-operators

Examples

will produce lints
lint(
text = "x<-1L",
linters = infix_spaces_linter()

)

lint(
text = "1:4 %>%sum()",
linters = infix_spaces_linter()

)

okay
lint(
text = "x <= 1L",
linters = infix_spaces_linter()

)

lint(
text = "1:4 %>% sum()",
linters = infix_spaces_linter()

)

code_lines <- "
ab <- 1L
abcdef <- 2L

"

writeLines(code_lines)

https://style.tidyverse.org/syntax.html#infix-operators

66 inner_combine_linter

lint(
text = code_lines,
linters = infix_spaces_linter(allow_multiple_spaces = TRUE)

)
lint(

text = "a||b",

linters = infix_spaces_linter(exclude_operators = "|[|")
)

inner_combine_linter Require c() to be applied before relatively expensive vectorized func-
tions

Description

as.Date(c(a, b)) is logically equivalent to c(as.Date(a), as.Date(b)). The same equivalence
holds for several other vectorized functions like as.POSIXct () and math functions like sin(). The
former is to be preferred so that the most expensive part of the operation (as.Date()) is applied
only once.

Usage

inner_combine_linter ()

Tags

consistency, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "c(loglo(x), loglo(y), logle(z))",
linters = inner_combine_linter()

)

okay

lint(
text = "loglo(c(x, vy, z))",
linters = inner_combine_linter()

)

lint(
text = "c(log(x, base = 10), loglo(x, base = 2))",
linters = inner_combine_linter()

is_lint_level 67

is_lint_level Is this an expression- or a file-level source object?

Description

Helper for determining whether the current source_expression contains all expressions in the
current file, or just a single expression.

Usage

is_lint_level(source_expression, level = c("expression”, "file"))

Arguments

source_expression
A parsed expression object, i.e., an element of the object returned by get_source_expressions().

level Which level of expression is being tested? "expression” means an individual
expression, while "file" means all expressions in the current file are available.

Examples

tmp <- withr::local_tempfile(lines = c("x <= 1", "y <= x + 1"))
source_exprs <- get_source_expressions(tmp)

is_lint_level(source_exprs$expressions[[1L]], level = "expression”)
is_lint_level(source_exprs$expressions[[1L]], level = "file")
is_lint_level(source_exprs$expressions[[3L]], level = "expression”)
is_lint_level(source_exprs$expressions[[3L]], level = "file")

is_numeric_linter Redirect is.numeric(x) || is.integer(x) to just use

is.numeric(x)

Description
is.numeric() returns TRUE when typeof(x) is double or integer — testing is.numeric(x) ||
is.integer(x) is thus redundant.

Usage

is_numeric_linter()

Details
NB: This linter plays well with class_equals_linter (), which can help avoid further is.numeric()
equivalents like any(class(x) == c("numeric”, "integer")).

Tags

best_practices, consistency, readability

68 lengths_linter
See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "is.numeric(y) || is.integer(y)",
linters = is_numeric_linter()
)
lint(
text = 'class(z) %in% c("numeric"”, "integer")',
linters = is_numeric_linter()
)
okay
lint(
text = "is.numeric(y) || is.factor(y)",
linters = is_numeric_linter()
)
lint(
text = 'class(z) %in% c("numeric”, "integer", "factor")',
linters = is_numeric_linter()
)
lengths_linter Require usage of lengths() where possible
Description

lengths() is a function that was added to base R in version 3.2.0 to get the length of each element
of a list. It is equivalent to sapply(x, length), but faster and more readable.

Usage

lengths_linter()

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

line_length_linter

Examples

will produce lints
lint(
text = "sapply(x, length)”,
linters = lengths_linter()
)

lint(
text = "vapply(x, length, integer(1L))",
linters = lengths_linter()

)

lint(
text = "purrr::map_int(x, length)"”,
linters = lengths_linter()

)

okay

lint(
text = "lengths(x)",
linters = lengths_linter()

69

line_length_linter Line length linter

Description

Check that the line length of both comments and code is less than length.

Usage

line_length_linter(length = 80L)

Arguments

length maximum line length allowed. Default is 80L (Hollerith limit).

Tags

configurable, default, readability, style

See Also

* linters for a complete list of linters available in lintr.

* https://style.tidyverse.org/syntax.html#long-lines

https://style.tidyverse.org/syntax.html#long-lines

70 lint

Examples

will produce lints
lint(

text = strrep(”"x", 23L),

linters = line_length_linter(length
)

20L)

okay
lint(

text = strrep(”"x", 21L),

linters = line_length_linter(length = 40L)
)

lint Lint a file, directory, or package

Description

e lint() lints a single file.
e lint_dir() lints all files in a directory.

e lint_package() lints all likely locations for R files in a package, i.e. R/, tests/, inst/,
vignettes/, data-raw/, demo/, and exec/.

Usage

lint(
filename,
linters = NULL,
cache = FALSE,
parse_settings = TRUE,
text = NULL

lint_dir(

path = ".",

L

relative_path = TRUE,

exclusions = list("renv”, "packrat"),

pattern = rex::rex(".", one_of ("Rr"), or("", "html”, "md", "nw", "rst"”, "tex", "txt"),
end),

parse_settings = TRUE

)

lint_package(
path = ".",
relative_path = TRUE,
exclusions = list("R/RcppExports.R"),
parse_settings = TRUE

lint 71

Arguments
filename either the filename for a file to lint, or a character string of inline R code for lint-
ing. The latter (inline data) applies whenever filename has a newline character
(\n).
linters a named list of linter functions to apply. See linters for a full list of default and
available linters.
Provide additional arguments to be passed to:
e exclude() (in case of 1int();e.g. lints or exclusions)
e lint() (in case of lint_dir() and lint_package(); e.g. linters or
cache)
cache given a logical, toggle caching of lint results. If passed a character string, store

the cache in this directory.
parse_settings whether to try and parse the settings.

text Optional argument for supplying a string or lines directly, e.g. if the file is
already in memory or linting is being done ad hoc.

path For the base directory of the project (for Lint_dir()) or package (for lint_package()).

relative_path if TRUE, file paths are printed using their path relative to the base directory. If
FALSE, use the full absolute path.

exclusions exclusions for exclude(), relative to the package path.

pattern pattern for files, by default it will take files with any of the extensions .R, .Rmd,
.qmd, .Rnw, .Rhtml, .Rrst, .Rtex, .Rtxt allowing for lowercase r (.r, ...).

Details

Read vignette("lintr") to learn how to configure which linters are run by default. Note that
if files contain unparseable encoding problems, only the encoding problem will be linted to avoid
unintelligible error messages from other linters.

Value

An object of class c("1lints"”, "list"), each element of which is a "1ist" object.

Examples

f <- withr::local_tempfile(lines = "a=1", fileext = "R")
lint(f) # linting a file

lint("a = 123\n") # linting inline-code

lint(text = "a = 123") # linting inline-code

if (FALSE) {
lint_dir()

lint_dir(
linters = list(semicolon_linter()),
exclusions = list(
"inst/doc/creating_linters.R" = 1,
"inst/example/bad.R",
"renv”

72

if (FALSE) {
lint_package()

lint_package(
linters = linters_with_defaults(semicolon_linter = semicolon_linter()),
exclusions = list("inst/doc/creating_linters.R” = 1, "inst/example/bad.R")

lint-s3

lint-s3 Create a 1int object

Description

Create a lint object

Usage

Lint(
filename,
line_number = 1L,
column_number = 1L,
type = c("style”, "warning”, "error"),
message = "",
line = "",
ranges = NULL,
linter = ""

nn

Arguments

filename path to the source file that was linted.
line_number line number where the lint occurred.

column_number column number where the lint occurred.

type type of lint.
message message used to describe the lint error
line code source where the lint occurred
ranges a list of ranges on the line that should be emphasized.
linter deprecated. No longer used.
Value

an object of class c("1int", "list").

Linter 73

Linter Create a linter closure

Description

Create a linter closure

Usage

Linter(fun, name = linter_auto_name())

Arguments
fun A function that takes a source file and returns 1int objects.
name Default name of the Linter. Lints produced by the linter will be labelled with
name by default.
Value

The same function with its class set to ’linter’.

linters Available linters

Description

A variety of linters are available in lintr. The most popular ones are readily accessible through
default_linters().

Within a 1int () function call, the linters in use are initialized with the provided arguments and fed
with the source file (provided by get_source_expressions()).

A data frame of all available linters can be retrieved using available_linters(). Documentation
for linters is structured into tags to allow for easier discovery; see also available_tags().

Tags
The following tags exist:

* best_practices (50 linters)

e common_mistakes (7 linters)
* configurable (29 linters)

* consistency (18 linters)
 correctness (7 linters)

e default (25 linters)

* deprecated (8 linters)

* efficiency (23 linters)

* executing (5 linters)

* package_development (14 linters)
* readability (47 linters)

e robustness (14 linters)

* style (34 linters)

74

Linters

linters

The following linters exist:

absolute_path_linter (tags: best_practices, configurable, robustness)
any_duplicated_linter (tags: best_practices, efficiency)

any_is_na_linter (tags: best_practices, efficiency)

assignment_linter (tags: configurable, consistency, default, style)
backport_linter (tags: configurable, package_development, robustness)
boolean_arithmetic_linter (tags: best_practices, efficiency, readability)
brace_linter (tags: configurable, default, readability, style)
class_equals_linter (tags: best_practices, consistency, robustness)
commas_linter (tags: default, readability, style)

commented_code_linter (tags: best_practices, default, readability, style)
condition_message_linter (tags: best_practices, consistency)
conjunct_test_linter (tags: best_practices, configurable, package_development, readabil-
ity)

consecutive_assertion_linter (tags: consistency, readability, style)
cyclocomp_linter (tags: best_practices, configurable, default, readability, style)
duplicate_argument_linter (tags: common_mistakes, configurable, correctness)
empty_assignment_linter (tags: best_practices, readability)

equals_na_linter (tags: common_mistakes, correctness, default, robustness)
expect_comparison_linter (tags: best_practices, package_development)
expect_identical_linter (tags: package_development)

expect_length_linter (tags: best_practices, package_development, readability)
expect_named_linter (tags: best_practices, package_development, readability)
expect_not_linter (tags: best_practices, package_development, readability)
expect_null_linter (tags: best_practices, package_development)
expect_s3_class_linter (tags: best_practices, package_development)
expect_s4_class_linter (tags: best_practices, package_development)
expect_true_false_linter (tags: best_practices, package_development, readability)
expect_type_linter (tags: best_practices, package_development)
extraction_operator_linter (tags: best_practices, style)

fixed_regex_linter (tags: best_practices, efficiency, readability)
for_loop_index_linter (tags: best_practices, readability, robustness)
function_argument_linter (tags: best_practices, consistency, style)
function_left_parentheses_linter (tags: default, readability, style)
function_return_linter (tags: best_practices, readability)
ifelse_censor_linter (tags: best_practices, efficiency)
implicit_assignment_linter (tags: best_practices, configurable, readability, style)
implicit_integer_linter (tags: best_practices, configurable, consistency, style)

indentation_linter (tags: configurable, default, readability, style)

linters

75

infix_spaces_linter (tags: configurable, default, readability, style)
inner_combine_linter (tags: consistency, efficiency, readability)
is_numeric_linter (tags: best_practices, consistency, readability)
lengths_linter (tags: best_practices, efficiency, readability)
line_length_linter (tags: configurable, default, readability, style)
literal_coercion_linter (tags: best_practices, consistency, efficiency)
matrix_apply_linter (tags: efficiency, readability)
missing_argument_linter (tags: common_mistakes, configurable, correctness)
missing_package_linter (tags: common_mistakes, robustness)
namespace_linter (tags: configurable, correctness, executing, robustness)
nested_ifelse_linter (tags: efficiency, readability)
nonportable_path_linter (tags: best_practices, configurable, robustness)
numeric_leading_zero_linter (tags: consistency, readability, style)
object_length_linter (tags: configurable, default, executing, readability, style)
object_name_linter (tags: configurable, consistency, default, executing, style)
object_usage_linter (tags: configurable, correctness, default, executing, readability, style)
outer_negation_linter (tags: best_practices, efficiency, readability)
package_hooks_linter (tags: correctness, package_development, style)
paren_body_linter (tags: default, readability, style)

paste_linter (tags: best_practices, configurable, consistency)
pipe_call_linter (tags: readability, style)

pipe_continuation_linter (tags: default, readability, style)

quotes_linter (tags: configurable, consistency, default, readability, style)
redundant_equals_linter (tags: best_practices, common_mistakes, efficiency, readability)
redundant_ifelse_linter (tags: best_practices, configurable, consistency, efficiency)
regex_subset_linter (tags: best_practices, efficiency)
routine_registration_linter (tags: best_practices, efficiency, robustness)
semicolon_linter (tags: configurable, default, readability, style)

seq_linter (tags: best_practices, consistency, default, efficiency, robustness)
sort_linter (tags: best_practices, efficiency, readability)
spaces_inside_linter (tags: default, readability, style)
spaces_left_parentheses_linter (tags: default, readability, style)
sprintf_linter (tags: common_mistakes, correctness)
string_boundary_linter (tags: configurable, efficiency, readability)
strings_as_factors_linter (tags: robustness)

system_file_linter (tags: best_practices, consistency, readability)

T_and_F_symbol_linter (tags: best_practices, consistency, default, readability, robustness,
style)

todo_comment_linter (tags: configurable, style)

trailing_blank_lines_linter (tags: default, style)

76

linters_with_defaults

trailing_whitespace_linter (tags: configurable, default, style)

undesirable_function_linter (tags: best_practices, configurable, efficiency, robustness,
style)

undesirable_operator_linter (tags: best_practices, configurable, efficiency, robustness,
style)

unnecessary_concatenation_linter (tags: configurable, efficiency, readability, style)
unnecessary_lambda_linter (tags: best_practices, efficiency, readability)
unnecessary_nested_if_linter (tags: best_practices, readability)
unnecessary_placeholder_linter (tags: best_practices, readability)
unreachable_code_linter (tags: best_practices, readability)

unused_import_linter (tags: best_practices, common_mistakes, configurable, executing)
vector_logic_linter (tags: best_practices, default, efficiency)

whitespace_linter (tags: consistency, default, style)

yoda_test_linter (tags: best_practices, package_development, readability)

linters_with_defaults Create a linter configuration based on defaults

Description

Make a new list based on lintr’s default linters. The result of this function is meant to be passed to
the linters argument of 1int (), or to be put in your configuration file.

Usage
linters_with_defaults(..., defaults = default_linters)
with_defaults(..., default = default_linters)
Arguments

See Also

Arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in the list of linters, it is replaced
by the new element. If it does not exist, it is added. If the value is NULL, the
linter is removed.

defaults, default

Default list of linters to modify. Must be named.

* linters_with_tags for basing off tags attached to linters, possibly across multiple packages.
* all_linters for basing off all available linters in lintr.
* available_linters to get a data frame of available linters.

* linters for a complete list of linters available in lintr.

linters_with_tags 77

Examples

When using interactively you will usually pass the result onto “lint™ or “lint_package()"
f <- withr::local_tempfile(lines = "my_slightly_long_variable_name <- 2.3", fileext = "R")
lint(f, linters = linters_with_defaults(line_length_linter = line_length_linter(120)))

the default linter list with a different line length cutoff
my_linters <- linters_with_defaults(line_length_linter = line_length_linter(120))

omit the argument name if you are just using different arguments
my_linters <- linters_with_defaults(defaults = my_linters, object_name_linter("camelCase"))

remove assignment checks (with NULL), add absolute path checks
my_linters <- linters_with_defaults(

defaults = my_linters,

assignment_linter = NULL,

absolute_path_linter()
)

checking the included linters
names(my_linters)

linters_with_tags Create a tag-based linter configuration

Description

Make a new list based on all linters provided by packages and tagged with tags. The result of this
function is meant to be passed to the linters argument of 1int (), or to be put in your configuration
file.

Usage
linters_with_tags(tags, ..., packages = "lintr"”, exclude_tags = "deprecated")
Arguments
tags Optional character vector of tags to search. Only linters with at least one match-
ing tag will be returned. If tags is NULL, all linters will be returned. See
available_tags("lintr") to find out what tags are already used by lintr.
Arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in the list of linters, it is replaced
by the new element. If it does not exist, it is added. If the value is NULL, the
linter is removed.
packages A character vector of packages to search for linters.

exclude_tags Tags to exclude from the results. Linters with at least one matching tag will not
be returned. If except_tags is NULL, no linters will be excluded. Note that tags
takes priority, meaning that any tag found in both tags and exclude_tags will
be included, not excluded.

78 literal_coercion_linter

Value

A modified list of linters.

See Also

* linters_with_defaults for basing off lintr’s set of default linters.
* all_linters for basing off all available linters in lintr.
* available_linters to get a data frame of available linters.

* linters for a complete list of linters available in lintr.

Examples

~linters_with_defaults()" and ~linters_with_tags("default”)™ are the same:
all.equal(linters_with_defaults(), linters_with_tags("default”))

Get all linters useful for package development
linters <- linters_with_tags(tags = c("package_development”, "style"))
names(linters)

Get all linters tagged as "default” from lintr and mypkg
if (FALSE) {

linters_with_tags("default"”, packages = c("lintr”, "mypkg"))
3

literal_coercion_linter
Require usage of correctly-typed literals over literal coercions

Description
as.integer(1) (or rlang::int(1)) is the same as 1L but the latter is more concise and gets typed
correctly at compilation.

Usage

literal_coercion_linter()

Details

The same applies to missing sentinels like NA — typically, it is not necessary to specify the storage
type of NA, but when it is, prefer using the typed version (e.g. NA_real_) instead of a coercion (like
as.numeric(NA)).

Tags

best_practices, consistency, efficiency

See Also

linters for a complete list of linters available in lintr.

matrix_apply_linter 79

Examples

will produce lints
lint(
text = "int(1)",
linters = literal_coercion_linter()

)
lint(
text = "as.character(NA)",
linters = literal_coercion_linter()
)
lint(

text = "rlang::1gl(1L)",
linters = literal_coercion_linter()

)
okay
lint(
text = "1L",
linters = literal_coercion_linter()
)
lint(
text = "NA_character_",
linters = literal_coercion_linter()
)
lint(
text = "TRUE",
linters = literal_coercion_linter()
)
matrix_apply_linter Require usage of colSums(x) or rowSums (x) over apply(x, ., sum)
Description

colSums() and rowSums() are clearer and more performant alternatives to apply(x, 2, sum) and
apply(x, 1, sum) respectively in the case of 2D arrays, or matrices

Usage

matrix_apply_linter()

Tags

efficiency, readability

See Also

linters for a complete list of linters available in lintr.

80 missing_argument_linter

Examples

will produce lints
lint(
text = "apply(x, 1, sum)”,
linters = matrix_apply_linter()
)

lint(
text = "apply(x, 2, sum)”,
linters = matrix_apply_linter()
)

lint(
text = "apply(x, 2, sum, na.rm = TRUE)",
linters = matrix_apply_linter()

)

lint(
text = "apply(x, 2:4, sum)”,
linters = matrix_apply_linter()

missing_argument_linter
Missing argument linter

Description

Check for missing arguments in function calls (e.g. stats: :median(1:10,)).

Usage
missing_argument_linter(
except = c("alist”, "quote”, "switch”),
allow_trailing = FALSE
)
Arguments
except a character vector of function names as exceptions.

allow_trailing always allow trailing empty arguments?

Tags

common_mistakes, configurable, correctness

See Also

linters for a complete list of linters available in lintr.

missing_package_linter 81

Examples

will produce lints
lint(
text = 'tibble(x = "a",)',
linters = missing_argument_linter()

)

okay
lint(
text = 'tibble(x = "a")',
linters = missing_argument_linter()

)
lint(
text = "tibble(x = "a",)',
linters = missing_argument_linter(except = "tibble")
)
lint(

text = 'tibble(x = "a",)',
linters = missing_argument_linter(allow_trailing = TRUE)

)

missing_package_linter
Missing package linter

Description
Check for missing packages in library(), require(), loadNamespace(), and requireNamespace()
calls.

Usage

missing_package_linter()

Tags

common_mistakes, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "library(xyzxyz)",
linters = missing_package_linter()

82 modify_defaults

okay
lint(
text = "library(stats)”,
linters = missing_package_linter()

modify_defaults Modify lintr defaults

Description

Modify a list of defaults by name, allowing for replacement, deletion and addition of new elements.

Usage
modify_defaults(defaults, ...)
Arguments
defaults named list of elements to modify.
arguments of elements to change. If unnamed, the argument is automatically
named. If the named argument already exists in defaults, it is replaced by the
new element. If it does not exist, it is added. If the value is NULL, the element is
removed.
Value

A modified list of elements, sorted by name. To achieve this sort in a platform-independent way,
two transformations are applied to the names: (1) replace _ with @ and (2) convert tolower ().

See Also

¢ linters_with_defaults for basing off lintr’s set of default linters.

all_linters for basing off all available linters in lintr.
* linters_with_tags for basing off tags attached to linters, possibly across multiple packages.

available_linters to get a data frame of available linters.

linters for a complete list of linters available in lintr.

Examples

custom list of undesirable functions:
remove ~sapply” (using “NULL™)

add “cat™ (with an accompanying message),
add “print® (unnamed, i.e. with no accompanying message)
add “source™ (as taken from “all_undesirable_functions™)

my_undesirable_functions <- modify_defaults(
defaults = default_undesirable_functions,
sapply = NULL, "cat” = "No cat allowed”, "print"”, all_undesirable_functions[["source"]]

)

list names of functions specified as undesirable
names(my_undesirable_functions)

namespace_linter 83

namespace_linter Namespace linter

Description

Check for missing packages and symbols in namespace calls. Note that using check_exports=TRUE
or check_nonexports=TRUE will load packages used in user code so it could potentially change the
global state.

Usage

namespace_linter(check_exports = TRUE, check_nonexports = TRUE)

Arguments

check_exports Check if symbol is exported from namespace in namespace: : symbol calls.
check_nonexports
Check if symbol exists in namespace in namespace: : : symbol calls.

Tags

configurable, correctness, executing, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "xyzxyz::sd(c(1, 2, 3))",
linters = namespace_linter()

)

lint(
text = "stats::ssd(c(1, 2, 3))",
linters = namespace_linter()

)

okay

lint(
text = "stats::sd(c(1, 2, 3))",
linters = namespace_linter()

)

lint(
text = "stats::ssd(c(1, 2, 3))",
linters = namespace_linter(check_exports = FALSE)

)

lint(
text = "stats:::ssd(c(1, 2, 3))",

84 nested_ifelse_linter

linters = namespace_linter(check_nonexports = FALSE)

nested_ifelse_linter Block usage of nested ifelse() calls

Description
Calling ifelse() in nested calls is problematic for two main reasons:

1. It can be hard to read — mapping the code to the expected output for such code can be a messy
task/require a lot of mental bandwidth, especially for code that nests more than once

2. It is inefficient — ifelse() can evaluate all of its arguments at both yes and no (see https:
//stackoverflow.com/q/16275149); this issue is exacerbated for nested calls
Usage

nested_ifelse_linter()

Details

Users can instead rely on a more readable alternative modeled after SQL CASE WHEN statements,
such as data.table::fcase() or dplyr::case_when(), or use a look-up-and-merge approach
(build a mapping table between values and outputs and merge this to the input).

Tags

efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'ifelse(x == "a", 1L, ifelse(x == "b", 2L, 3L))',
linters = nested_ifelse_linter()
)
okay
lint(
text = 'dplyr::case_when(x == "a" ~ 1L, x == "b" ~ 2L, TRUE ~ 3L)',
linters = nested_ifelse_linter()
)
lint(
text = 'data.table::fcase(x == "a", 1L, x == "b", 2L, default = 3L)',

linters = nested_ifelse_linter()

https://stackoverflow.com/q/16275149
https://stackoverflow.com/q/16275149

nonportable_path_linter 85

nonportable_path_linter
Non-portable path linter

Description

Check that file.path() is used to construct safe and portable paths.

Usage
nonportable_path_linter(lax = TRUE)

Arguments
lax Less stringent linting, leading to fewer false positives. If TRUE, only lint path
strings, which
* contain at least two path elements, with one having at least two characters
and
* contain only alphanumeric chars (including UTF-8), spaces, and win32-
allowed punctuation
Tags

best_practices, configurable, robustness

See Also

* linters for a complete list of linters available in lintr.

e absolute_path_linter()

numeric_leading_zero_linter
Require usage of a leading zero in all fractional numerics

Description
While .1 and 0.1 mean the same thing, the latter is easier to read due to the small size of the ’.
glyph.

Usage

numeric_leading_zero_linter()

Tags

consistency, readability, style

See Also

linters for a complete list of linters available in lintr.

86 object_length_linter

Examples

will produce lints

lint(

text = "x <= .1",

linters = numeric_leading_zero_linter()
)
lint(

text = "x <- -.1",

linters = numeric_leading_zero_linter()
)
okay
lint(

text = "x <- 0.1",
linters = numeric_leading_zero_linter()

)

lint(
text = "x <- -0.1",
linters = numeric_leading_zero_linter()

object_length_linter Object length linter

Description

Check that object names are not too long. The length of an object name is defined as the length in
characters, after removing extraneous parts:

Usage

object_length_linter(length = 30L)

Arguments

length maximum variable name length allowed.

Details

* generic prefixes for implementations of S3 generics, e.g. as.data.frame.my_class has
length 8.

* leading ., e.g. .my_hidden_function has length 18.
* "%%" for infix operators, e.g. %my_op% has length 5.
* trailing <- for assignment functions, e.g. my_attr<- has length 7.

Note that this behavior relies in part on having packages in your Imports available; see the detailed
note in object_name_linter() for more details.

object_name_linter 87

Tags

configurable, default, executing, readability, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "very_very_long_variable_name <- 1L",
linters = object_length_linter(length = 10L)
)
okay
lint(
text = "very_very_long_variable_name <- 1L",
linters = object_length_linter(length = 30L)
)
lint(
text = "var <- 1L",
linters = object_length_linter(length = 10L)
)
object_name_linter Object name linter
Description

Check that object names conform to a naming style. The default naming styles are "snake_case"
and "symbols".

Usage
object_name_linter(styles = c("snake_case”, "symbols"), regexes = character())
Arguments
styles A subset of ‘symbols’, ‘CamelCase’, ‘camelCase’, ‘snake_case’, ‘SNAKE_CASE’,
‘dotted.case’, ‘lowercase’, ‘UPPERCASE’. A name should match at least one
of these styles. The "symbols” style refers to names containing only non-
alphanumeric characters; e.g., defining %+% from ggplot2 or %>% from magrittr
would not generate lint markers, whereas %m+% from lubridate (containing both
alphanumeric and non-alphanumeric characters) would.
regexes A (possibly named) character vector specifying a custom naming convention.

If named, the names will be used in the lint message. Otherwise, the regexes
enclosed by / will be used in the lint message. Note that specifying regexes
overrides the default styles. So if you want to combine regexes and styles,
both need to be explicitly specified.

88 object_name_linter

Details

Quotes (*"") and specials (% and trailing <-) are not considered part of the object name.

Note when used in a package, in order to ignore objects imported from other namespaces, this lin-
ter will attempt getNamespaceExports() whenever an import(PKG) or importFrom(PKG, ...)
statement is found in your NAMESPACE file. If requireNamespace() fails (e.g., the package is
not yet installed), the linter won’t be able to ignore some usages that would otherwise be allowed.

Suppose, for example, you have import (upstream) in your NAMESPACE, which makes available
its exported S3 generic function a_really_quite_long_function_name that you then extend in
your package by defining a corresponding method for your class my_class. Then, if upstream is
not installed when this linter runs, a lint will be thrown on this object (even though you don’t "own"
its full name).

The best way to get lintr to work correctly is to install the package so that it’s available in the session
where this linter is running.

Tags

configurable, consistency, default, executing, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(

text = "my_var <- 1L",

linters = object_name_linter(styles = "CamelCase")
)
lint(

text = "xYz <- 1L",
linters = object_name_linter(styles = c("UPPERCASE", "lowercase"))
)

lint(

text = "MyVar <- 1L",

linters = object_name_linter(styles = "dotted.case")
)
lint(

text = "asd <- 1L",
linters = object_name_linter(regexes = c(my_style = "F$", "f$"))

)
okay
lint(
text = "my_var <- 1L",
linters = object_name_linter(styles = "snake_case")
)
lint(

text = "xyz <- 1L",
linters = object_name_linter(styles = "lowercase")

object_usage_linter

)
lint(
text = "my.var <- 1L; myvar <- 2L",
linters = object_name_linter(styles
)
lint(

text = "asdf <- 1L; asdF <- 1L",

89

= c("dotted.case"”, "lowercase"))

linters = object_name_linter(regexes = c(my_style = "F$", "f$"))

)

object_usage_linter

Object usage linter

Description

Check that closures have the proper usage using codetools: :checkUsage(). Note that this runs
base: :eval() on the code, so do not use with untrusted code.

Usage

object_usage_linter(interpret_glue = TRUE, skip_with = TRUE)

Arguments

interpret_glue If TRUE, interpret glue: :glue() calls to avoid false positives caused by local
variables which are only used in a glue expression.

skip_with

Linters

A logical. If TRUE (default), code in with() expressions will be skipped. This

argument will be passed to skipWith argument of codetools: : checkUsage().

The following linters are tagged with *package_development’:

backport_linter
conjunct_test_linter
expect_comparison_linter
expect_identical_linter
expect_length_linter
expect_named_linter
expect_not_linter
expect_null_linter
expect_s3_class_linter
expect_s4_class_linter
expect_true_false_linter
expect_type_linter
package_hooks_linter

yoda_test_linter

90 outer_negation_linter

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "foo <- function() { x <=1 }",
linters = object_usage_linter()

)

okay

lint(
text = "foo <- function(x) { x <- 1 }",
linters = object_usage_linter()

)

lint(
text = "foo <- function() { x <- 1; return(x) }",
linters = object_usage_linter()

)

outer_negation_linter Require usage of !'any(x) over all(!x), 'all(x) over any(!x)

Description
any(!x) is logically equivalent to !any(x); ditto for the equivalence of all(!x) and !any(x).
Negating after aggregation only requires inverting one logical value, and is typically more readable.
Usage

outer_negation_linter()

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "all(!x)",
linters = outer_negation_linter()

)

lint(
text = "any(!x)",
linters = outer_negation_linter()

package_development_linters

)
okay
lint(

text = "lany(x)",

linters = outer_negation_linter()
)
lint(

text = "lall(x)",

linters = outer_negation_linter()
)

package_development_linters
Package development linters

Description

Linters useful to package developers, for example for writing consistent tests.

Linters

The following linters are tagged with *package_development’:

e backport_linter

e conjunct_test_linter

* expect_comparison_linter
e expect_identical_linter
e expect_length_linter

e expect_named_linter

e expect_not_linter

e expect_null_linter

e expect_s3_class_linter

e expect_s4_class_linter

* expect_true_false_linter
e expect_type_linter

e package_hooks_linter

e yoda_test_linter

See Also

linters for a complete list of linters available in lintr.

92 package_hooks_linter

package_hooks_linter Package hooks linter

Description
Check various common "gotchas" in .onLoad(), .onAttach(), .Last.1lib(), and .onDetach()
namespace hooks that will cause R CMD check issues. See Writing R Extensions for details.
Usage

package_hooks_linter()

Details

1. .onLoad() shouldn’tcall cat(), message(), print(),writeLines(), packageStartupMessage(),
require(), library(), or installed.packages().

2. .onAttach() shouldn’tcall cat(), message(), print(),writeLines(), library.dynam(),
require(), library(), or installed.packages().

3. .Last.lib() and .onDetach() shouldn’t call library.dynam.unload().

4. .onLoad() and .onAttach() should take two arguments, with names matching *1ib and
“pkg; .Last.lib() and .onDetach() should take one argument with name matching *1ib.

Tags

correctness, package_development, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = ".onLoad <- function(lib, ...) { }",
linters = package_hooks_linter()

)

lint(
text = ".onAttach <- function(lib, pkg) { require(foo) }",
linters = package_hooks_linter()

)

lint(
text = ".onDetach <- function(pkg) { }",
linters = package_hooks_linter()

)

okay

lint(
text = ".onLoad <- function(lib, pkg) { }",

linters = package_hooks_linter()

paren_body_linter 93
)
lint(
text = '.onAttach <- function(lib, pkg) { loadNamespace("foo") }',
linters = package_hooks_linter()
)
lint(
text = ".onDetach <- function(lib) { }",
linters = package_hooks_linter()
)
paren_body_linter Parenthesis before body linter
Description

Check that there is a space between right parenthesis and a body expression.

Usage

paren_body_linter ()

Tags

default, readability, style

See Also

* linters for a complete list of linters available in lintr.

* https://style.tidyverse.org/syntax.html#parentheses

Examples

will produce lints

lint(
text = "function(x)x + 1",
linters = paren_body_linter()
)
okay
lint(
text = "function(x) x + 1",

linters = paren_body_linter()

)

https://style.tidyverse.org/syntax.html#parentheses

94 paste_linter

parse_exclusions read a source file and parse all the excluded lines from it

Description

read a source file and parse all the excluded lines from it

Usage

parse_exclusions(
file,
exclude = settings$exclude,
exclude_start = settings$exclude_start,
exclude_end = settings$exclude_end,
exclude_linter = settings$exclude_linter,
exclude_linter_sep = settings$exclude_linter_sep,
lines = NULL,
linter_names = NULL

)
Arguments
file R source file
exclude regular expression used to mark lines to exclude

exclude_start regular expression used to mark the start of an excluded range
exclude_end regular expression used to mark the end of an excluded range

exclude_linter regular expression used to capture a list of to-be-excluded linters immediately
following a exclude or exclude_start marker.

exclude_linter_sep

regular expression used to split a linter list into individual linter names for ex-
clusion.

lines a character vector of the content lines of file

linter_names Names of active linters

Value

A possibly named list of excluded lines, possibly for specific linters.

paste_linter Raise lints for several common poor usages of paste()

Description

The following issues are linted by default by this linter (see arguments for which can be de-activated
optionally):

paste_linter 95

Usage

paste_linter(allow_empty_sep = FALSE, allow_to_string = FALSE)

Arguments

allow_empty_sep

Logical, default FALSE. If TRUE, usage of paste() with sep = "" is not linted.
allow_to_string

Logical, default FALSE. If TRUE, usage of paste() and paste@() with collapse

n

=", "is not linted.

Details

nn

1. Block usage of paste() with sep="". paste@() is a faster, more concise alternative.

2. Block usage of paste() or paste@() with collapse =", ". toString() is a direct wrap-
per for this, and alternatives like glue: :glue_collapse() might give better messages for
humans.

3. Block usage of paste@() that supplies sep= — this is not a formal argument to paste®, and is
likely to be a mistake.

4. Block usage of paste() / pasted() combined with rep() that could be replaced by strrep().
strrep() can handle the task of building a block of repeated strings (e.g. often used to build
"horizontal lines" for messages). This is both more readable and skips the (likely small) over-
head of putting two strings into the global string cache when only one is needed.

Only target scalar usages — strrep can handle more complicated cases (e.g. strrep(letters,
26:1), but those aren’t as easily translated from a paste(collapse=) call.

Tags

best_practices, configurable, consistency

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'paste(”a”, "b", sep = "")',
linters = paste_linter()

)

lint(
text = 'paste(c(”a”, "b"), collapse =", ")',
linters = paste_linter()

)

lint(
text = 'paste@(c("a”, "b"), sep =" ")",
linters = paste_linter()

)

lint(

96 pipe_call_linter

text = 'paste@(rep(”*", 10L), collapse = "")',
linters = paste_linter()

)

okay

lint(

text = 'paste@(”a”, "b")',
linters = paste_linter()

)
lint(
text = 'paste(”a”, "b", sep = "")',
linters = paste_linter(allow_empty_sep = TRUE)
)
lint(

text = 'toString(c("a", "b"))',
linters = paste_linter()

)
lint(
text = 'paste(c(”a”, "b"), collapse =", ")',
linters = paste_linter(allow_to_string = TRUE)
)
lint(

text = 'paste(c(”a", "b"))',
linters = paste_linter()

)

lint(
text = 'strrep(”"x", 10L)',
linters = paste_linter()

)

pipe_call_linter Pipe call linter

Description
Force explicit calls in magrittr pipes, e.g., 1:3 %>% sum() instead of 1:3 %>% sum. Note that native
pipe always requires a function call, i.e. 1:3 |> sum will produce an error.

Usage
pipe_call_linter()

Tags

readability, style

See Also

linters for a complete list of linters available in lintr.

pipe_continuation_linter

Examples

will produce lints

lint(
text = "1:3 %>% mean %>% as.character”,
linters = pipe_call_linter()

)

okay

lint(
text = "1:3 %>% mean() %>% as.character()",
linters = pipe_call_linter()

)

97

pipe_continuation_linter
Pipe continuation linter

Description

Check that each step in a pipeline is on a new line, or the entire pipe fits on one line.

Usage

pipe_continuation_linter()

Tags

default, readability, style

See Also

* linters for a complete list of linters available in lintr.

e https://style.tidyverse.org/pipes.html#long-lines-2

Examples

will produce lints
code_lines <- "1:3 %>%\n mean() %>% as.character()"
writeLines(code_lines)
lint(
text = code_lines,
linters = pipe_continuation_linter()

code_lines <- "1:3 |> mean() |>\n as.character()”
writeLines(code_lines)
lint(

text = code_lines,

linters = pipe_continuation_linter()

)

okay

https://style.tidyverse.org/pipes.html#long-lines-2

98 quotes_linter

lint(
text = "1:3 %>% mean() %>% as.character()”,
linters = pipe_continuation_linter()

)

code_lines <- "1:3 %>%\n mean() %>%\n as.character()”
writeLines(code_lines)
lint(

text = code_lines,

linters = pipe_continuation_linter()

)

lint(
text = "1:3 |> mean() |> as.character()”,
linters = pipe_continuation_linter()

)

code_lines <- "1:3 |>\n mean() |>\n as.character()"
writeLines(code_lines)
lint(

text = code_lines,

linters = pipe_continuation_linter()

quotes_linter Character string quote linter

Description

Check that the desired quote delimiter is used for string constants.

Usage
quotes_linter(delimiter = c("\"", "'"))
Arguments
delimiter Which quote delimiter to accept. Defaults to the tidyverse default of " (double-
quoted strings).
Tags

configurable, consistency, default, readability, style

See Also

* linters for a complete list of linters available in lintr.

* https://style.tidyverse.org/syntax.html#character-vectors

https://style.tidyverse.org/syntax.html#character-vectors

readability_linters

Examples

will produce lints

lint(
text = "c('a', 'b')",
linters = quotes_linter()

)

okay

lint(
teXt = IC("aH’ ”bll)l’
linters = quotes_linter()

)

code_lines <- "paste@(x, '\"this is fine\"')"
writeLines(code_lines)
lint(

text = code_lines,

linters = quotes_linter()

)
okay
lint(
text = "C(lav’ Vbl)n’
linters = quotes_linter(delimiter = "'")
)

99

readability_linters Readability linters

Description

Linters highlighting readability issues, such as missing whitespace.

Linters
The following linters are tagged with ‘readability’:

* boolean_arithmetic_linter

* brace_linter

e commas_linter

e commented_code_linter

e conjunct_test_linter

e consecutive_assertion_linter
e cyclocomp_linter

e empty_assignment_linter

e expect_length_linter

* expect_named_linter

e expect_not_linter

100

See Also

linters for a complete list of linters available in lintr.

expect_true_false_linter
fixed_regex_linter
for_loop_index_linter
function_left_parentheses_linter
function_return_linter
implicit_assignment_linter
indentation_linter
infix_spaces_linter
inner_combine_linter
is_numeric_linter
lengths_linter
line_length_linter
matrix_apply_linter
nested_ifelse_linter
numeric_leading_zero_linter
object_length_linter
object_usage_linter
outer_negation_linter
paren_body_linter
pipe_call_linter
pipe_continuation_linter
quotes_linter
redundant_equals_linter
semicolon_linter

sort_linter
spaces_inside_linter
spaces_left_parentheses_linter
string_boundary_linter
system_file_linter
T_and_F_symbol_linter
unnecessary_concatenation_linter
unnecessary_lambda_linter
unnecessary_nested_if_linter
unnecessary_placeholder_linter
unreachable_code_linter

yoda_test_linter

readability_linters

read_settings 101

read_settings Read lintr settings

Description
Lintr searches for settings for a given source file in the following order.

1. options defined as linter.setting.
linter_file in the same directory
linter_file in the project directory

linter_file in the user home directory

vk wn

default_settings()

Usage

read_settings(filename)

Arguments

filename source file to be linted

Details

The default linter_file name is .lintr but it can be changed with option lintr.linter_file or
the environment variable R_LLINTR_LINTER_FILE This file is a dcf file, see base: :read.dcf () for
details.

redundant_equals_linter
Block usage of ==, != on logical vectors

Description

Testing x == TRUE is redundant if x is a logical vector. Wherever this is used to improve readabil-
ity, the solution should instead be to improve the naming of the object to better indicate that its
contents are logical. This can be done using prefixes (is, has, can, etc.). For example, is_child,
has_parent_supervision, can_watch_horror_movie clarify their logical nature, while child,
parent_supervision, watch_horror_movie don’t.

Usage

redundant_equals_linter()

Tags

best_practices, common_mistakes, efficiency, readability

102 redundant_ifelse_linter

See Also

* linters for a complete list of linters available in lintr.

e outer_negation_linter()

Examples

will produce lints

lint(
text = "if (any(x == TRUE)) 1",
linters = redundant_equals_linter()

)

lint(
text = "if (any(x != FALSE)) 0",
linters = redundant_equals_linter()

)

okay
lint(
text = "if (any(x)) 1",
linters = redundant_equals_linter()

)

lint(
text = "if (lall(x)) @",
linters = redundant_equals_linter()

)

redundant_ifelse_linter
Prevent ifelse() from being used to produce TRUE/FALSE or 1/0

Description

Expressions like ifelse(x, TRUE, FALSE) and ifelse(x, FALSE, TRUE) are redundant; just x
or !x suffice in R code where logical vectors are a core data structure. ifelse(x, 1, @) is also
as.numeric(x), but even this should be needed only rarely.

Usage

redundant_ifelse_linter(allow1@ = FALSE)

Arguments
allowl10 Logical, default FALSE. If TRUE, usage like ifelse(x, 1, @) is allowed, i.e.,
only usage like ifelse(x, TRUE, FALSE) is linted.
Tags

best_practices, configurable, consistency, efficiency

regex_subset_linter 103

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "ifelse(x >= 2.5, TRUE, FALSE)",
linters = redundant_ifelse_linter()

)

lint(
text = "ifelse(x < 2.5, 1L, oL)",
linters = redundant_ifelse_linter()

)

okay
lint(
text = "x >= 2.5",
linters = redundant_ifelse_linter()

)

Note that this is just to show the strict equivalent of the example above;
converting to integer is often unnecessary and the logical vector itself
should suffice.
lint(

text = "as.integer(x < 2.5)",

linters = redundant_ifelse_linter()

)

lint(
text = "ifelse(x < 2.5, 1L, oL)",
linters = redundant_ifelse_linter(allow1@ = TRUE)

regex_subset_linter Require usage of direct methods for subsetting strings via regex

Description
Using value = TRUE in grep () returns the subset of the input that matches the pattern, e.g. grep(”[a-m]",
letters, value = TRUE) will return the first 13 elements (a through m).

Usage

regex_subset_linter()

Details
letters[grep("[a-m]", letters)] and letters[grepl(”"[a-m]", letters)] both return the
same thing, but more circuitously and more verbosely.

The stringr package also provides an even more readable alternative, namely str_subset(),
which should be preferred to versions using str_detect() and str_which().

104 robustness_linters

Exceptions

Note that x[grep(pattern, x)] and grep(pattern, x, value = TRUE) are not completely inter-
changeable when x is not character (most commonly, when x is a factor), because the output of
the latter will be a character vector while the former remains a factor. It still may be preferable to
refactor such code, as it may be faster to match the pattern on levels(x) and use that to subset
instead.

Tags

best_practices, efficiency

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "x[grep(pattern, x)J1",
linters = regex_subset_linter()

)

lint(
text = "x[stringr::str_which(x, pattern)]”,
linters = regex_subset_linter()

)

okay

lint(
text = "grep(pattern, x, value = TRUE)",
linters = regex_subset_linter()

)
lint(
text = "stringr::str_subset(x, pattern)”,
linters = regex_subset_linter()
)
robustness_linters Robustness linters
Description

Linters highlighting code robustness issues, such as possibly wrong edge case behavior.

Linters
The following linters are tagged with ’robustness’:

e absolute_path_linter

e backport_linter

routine_registration_linter 105

e class_equals_linter

e equals_na_linter

e for_loop_index_linter

* missing_package_linter

* namespace_linter

* nonportable_path_linter

e routine_registration_linter
e seq_linter

* strings_as_factors_linter

e T_and_F_symbol_linter

e undesirable_function_linter

e undesirable_operator_linter

See Also

linters for a complete list of linters available in lintr.

routine_registration_linter
Identify unregistered native routines

Description

It is preferable to register routines for efficiency and safety.

Usage

routine_registration_linter()

Tags

best_practices, efficiency, robustness

See Also

* linters for a complete list of linters available in lintr.

e https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-native-routines

Examples

will produce lints

lint(
text = '.Call("cpp_routine”, PACKAGE = "mypkg")',
linters = routine_registration_linter()

)

lint(
text = '.Fortran("f_routine”, PACKAGE = "mypkg")',

linters = routine_registration_linter()

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-native-routines

106

semicolon_linter

)
okay
lint(
text = ".Call(cpp_routine)”,
linters = routine_registration_linter()
)
lint(
text = ".Fortran(f_routine)",
linters = routine_registration_linter()
)
sarif_output SARIF Report for lint results
Description

Generate a report of the linting results using the SARIF format.

Usage
sarif_output(lints, filename = "lintr_results.sarif”)
Arguments
lints the linting results.
filename the name of the output report
semicolon_linter Semicolon linter
Description

Check that no semicolons terminate expressions.

Usage

semicolon_linter(allow_compound = FALSE, allow_trailing = FALSE)

Arguments

allow_compound Logical, default FALSE. If TRUE, "compound" semicolons (e.g. as in x; VY, i.e.,

on the same line of code) are allowed.

allow_trailing Logical, default FALSE. If TRUE, "trailing" semicolons (i.e., those that terminate

lines of code) are allowed.

Tags

configurable, default, readability, style

https://sarifweb.azurewebsites.net/

semicolon_linter

See Also

* linters for a complete list of linters available in lintr.

* https://style.tidyverse.org/syntax.html#semicolons

Examples

will produce lints

lint(

text = "a <- 1;",

linters

lint(

text ="'

linters

)

lint(

= semicolon_linter()

'a <- 1, b <- 1“,

= semicolon_linter()

text = "function() { a <-1; b <=1 }",

linters

)

okay
lint(

text ="'

linters

)

lint(

text ="'

linters

= semicolon_linter()

'3 <- 1”,

= semicolon_linter()

'a <- 1;",

= semicolon_linter(allow_trailing = TRUE)

code_lines <- "a <- 1\nb <- 1"
writeLines(code_lines)

lint(

text = code_lines,

linters

)

lint(

text ="'

linters

)

= semicolon_linter()

a<-1; b <= 1",

= semicolon_linter(allow_compound = TRUE)

code_lines <- "function() { \n a <= 1\n b <- 1\n}"
writeLines(code_lines)

lint(

text = code_lines,

linters

= semicolon_linter()

107

https://style.tidyverse.org/syntax.html#semicolons

108 seq_linter

seq_linter Sequence linter

Description

This linter checks for 1:1length(...), 1:nrow(...),T:ncol(...), T:NROW(...) and 1:NCOL(...)

expressions in base-R, or their usage in conjunction with seq() (e.g., seq(length(...)), seq(nrow(..

etc.).

Usage

seq_linter()

Details

Additionally, it checks for 1:n() (from dplyr) and 1: .N (from data.table).

These often cause bugs when the right-hand side is zero. It is safer to use base::seq_len() or
base: :seq_along() instead.

Tags

best_practices, consistency, default, efficiency, robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "seq(length(x))",
linters = seqg_linter()

)
lint(
text = "T:nrow(x)",
linters = seqg_linter()
)
lint(

text = "dplyr::mutate(x, .id = 1:n())",
linters = seqg_linter()

)

okay

lint(
text = "seq_along(x)",
linters = seq_linter()

)

lint(
text = "seqg_len(nrow(x))",

)

sort_linter 109

linters = seqg_linter()

)

lint(
text = "dplyr::mutate(x, .id = seq_len(n()))",
linters = seqg_linter()

sort_linter Require usage of sort() over .[order(.)]

Description

sort() is the dedicated option to sort a list or vector. It is more legible and around twice as fast as
.Lorder(.)1, with the gap in performance growing with the vector size.

Usage

sort_linter()

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "x[order(x)]",
linters = sort_linter()

)

lint(
text = "x[order(x, decreasing = TRUE)]",
linters = sort_linter()

)

okay

lint(
text = "x[sample(order(x))]1",
linters = sort_linter()

)

lint(
text = "y[order(x)]1",
linters = sort_linter()

)

If you are sorting several objects based on the order of one of them, such

110 spaces_inside_linter

as:

x <- sample(1:26)

y <- letters

newx <- x[order(x)]

newy <- y[order(x)]

This will be flagged by the linter. However, in this very specific case,
it would be clearer and more efficient to run order() once and assign it
to an object, rather than mix and match order() and sort()

index <- order(x)

newx <- x[index]

newy <- y[index]

spaces_inside_linter Spaces inside linter

Description

Check that parentheses and square brackets do not have spaces directly inside them, i.e., directly
following an opening delimiter or directly preceding a closing delimiter.

Usage

spaces_inside_linter()

Tags

default, readability, style

See Also

* linters for a complete list of linters available in lintr.

e https://style.tidyverse.org/syntax.html#parentheses

Examples

will produce lints

lint(
text = "c(TRUE, FALSE)",
linters = spaces_inside_linter()

)

lint(
text = "x[1L 1",
linters = spaces_inside_linter()

)

okay
lint(
text = "c(TRUE, FALSE)",
linters = spaces_inside_linter()

)

lint(

https://style.tidyverse.org/syntax.html#parentheses

spaces_left_parentheses_linter 111

text = "x[1L]",
linters = spaces_inside_linter()

spaces_left_parentheses_linter
Spaces before parentheses linter

Description

Check that all left parentheses have a space before them unless they are in a function call.

Usage

spaces_left_parentheses_linter()

Tags

default, readability, style

See Also

* linters for a complete list of linters available in lintr.
e https://style.tidyverse.org/syntax.html#parentheses

e function_left_parentheses_linter()

Examples

will produce lints
lint(
text = "if(TRUE) x else y",
linters = spaces_left_parentheses_linter()

)

okay
lint(
text = "if (TRUE) x else y",
linters = spaces_left_parentheses_linter()

https://style.tidyverse.org/syntax.html#parentheses

112 sprintf_linter

sprintf_linter Require correct sprintf () calls

Description

Check for an inconsistent number of arguments or arguments with incompatible types (for literal
arguments) in sprintf () calls.

Usage

sprintf_linter()

Details

gettextf () calls are also included, since gettextf () is a thin wrapper around sprintf().

Tags

common_mistakes, correctness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'sprintf("hello %s %s %d", x, y)',
linters = sprintf_linter()

)

okay

lint(
text = 'sprintf("hello %s %s %d", x, vy, z)',
linters = sprintf_linter()

)

lint(
text = 'sprintf("hello %s %s %d", x, y, ...)"',
linters = sprintf_linter()

strings_as_factors_linter 113

strings_as_factors_linter
Identify cases where stringsAsFactors should be supplied explicitly

Description

Designed for code bases written for versions of R before 4.0 seeking to upgrade to R >= 4.0, where
one of the biggest pain points will surely be the flipping of the default value of stringsAsFactors
from TRUE to FALSE.

Usage

strings_as_factors_linter()

Details

It’s not always possible to tell statically whether the change will break existing code because R
is dynamically typed — e.g. in data.frame(x) if x is a string, this code will be affected, but if
x is a number, this code will be unaffected. However, in data.frame(x = "a"), the output will
unambiguously be affected. We can instead supply stringsAsFactors = TRUE, which will make
this code backwards-compatible.

See https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/.

Tags

robustness

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = 'data.frame(x = "a")"',
linters = strings_as_factors_linter()
)
okay
lint(
text = 'data.frame(x = "a", stringsAsFactors = TRUE)',
linters = strings_as_factors_linter()
)
lint(

nan

text = 'data.frame(x = "a", stringsAsFactors = FALSE)',
linters = strings_as_factors_linter()

)

lint(
text = "data.frame(x = 1.2)",
linters = strings_as_factors_linter()

https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/

114 string_boundary_linter

string_boundary_linter
Require usage of startsWith() and endsWith() over
grepl ()/substr() versions

Description

startsWith() is used to detect fixed initial substrings; it is more readable and more efficient
than equivalents using grepl() or substr(). c.f. startsWith(x, "abc"), grepl("*abc”, x),
substr(x, 1L, 3L) == "abc".

Usage

string_boundary_linter(allow_grepl = FALSE)

Arguments

allow_grepl Logical, default FALSE. If TRUE, usages with grepl() are ignored. Some au-
thors may prefer the conciseness offered by grepl() whereby NA input maps
to FALSE output, which doesn’t have a direct equivalent with startsWith() or
endsWith().

Details

Ditto for using endsWith() to detect fixed terminal substrings.

Note that there is a difference in behavior between how grepl () and startsWith() (and endsWith())
handle missing values. In particular, for grepl(), NA inputs are considered FALSE, while for
startsWith(), NA inputs have NA outputs. That means the strict equivalent of grepl("*abc”,
x) is !is.na(x) & startsWith(x, "abc").

We lint grepl() usages by default because the !is.na() version is more explicit with respect to
NA handling — though documented, the way grepl() handles missing inputs may be surprising to
some users.

Tags

configurable, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = 'grepl(”"*a"”, x)',
linters = string_boundary_linter()

)

style_linters 115

lint(
text = 'grepl("z$", x)',
linters = string_boundary_linter()

)

okay

lint(
text = 'startsWith(x, "a")',
linters = string_boundary_linter()

)

lint(
text = 'endsWith(x, "z")',
linters = string_boundary_linter()

)

If missing values are present, the suggested alternative wouldn't be strictly
equivalent, so this linter can also be turned off in such cases.
lint(

text = 'grepl("z$", x)',

linters = string_boundary_linter(allow_grepl = TRUE)

style_linters Style linters

Description

Linters highlighting code style issues.

Linters
The following linters are tagged with ’style’:

e assignment_linter

* brace_linter

e commas_linter

* commented_code_linter

e consecutive_assertion_linter
e cyclocomp_linter

* extraction_operator_linter

e function_argument_linter

e function_left_parentheses_linter
e implicit_assignment_linter

e implicit_integer_linter

* indentation_linter

e infix_spaces_linter

e line_length_linter

116 system_file_linter

* numeric_leading_zero_linter

* object_length_linter

* object_name_linter

e object_usage_linter

* package_hooks_linter

e paren_body_linter

e pipe_call_linter

* pipe_continuation_linter

* quotes_linter

e semicolon_linter

* spaces_inside_linter

e spaces_left_parentheses_linter
e T_and_F_symbol_linter

* todo_comment_linter

e trailing_blank_lines_linter

e trailing_whitespace_linter

e undesirable_function_linter

e undesirable_operator_linter

* unnecessary_concatenation_linter

* whitespace_linter

See Also

linters for a complete list of linters available in lintr.

system_file_linter Block usage of file.path() with system.file()

Description

system.file() hasa ... argument which, internally, is passed to file.path(), so including it in
user code is repetitive.

Usage

system_file_linter()

Tags

best_practices, consistency, readability

See Also

linters for a complete list of linters available in lintr.

todo_comment_linter

Examples

will produce lints
lint(

text = 'system.file(file.path("path”, "to"”, "data"), package = "foo")',

linters = system_file_linter()

)

lint(

text = 'file.path(system.file(package = "foo"), "path”, "to", "data")',

linters = system_file_linter()

okay

lint(
text = 'system.file("path”, "to", "data", package = "foo")',
linters = system_file_linter()

117

todo_comment_linter TODO comment linter

Description

Check that the source contains no TODO comments (case-insensitive).

Usage

todo_comment_linter(todo = c("todo”, "fixme"))
Arguments

todo Vector of strings that identify TODO comments.
Tags

configurable, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "x +y # TODO",
linters = todo_comment_linter()

)

lint(
text = "pi <- 1.0 # FIXME",
linters = todo_comment_linter()

118 trailing_blank_lines_linter

lint(
text = "x <- TRUE # hack”,
linters = todo_comment_linter(todo = c("todo"”, "fixme"”, "hack"))
)
okay
lint(
text = "x + y # my informative comment”,
linters = todo_comment_linter()
)
lint(

text = "pi <- 3.14",
linters = todo_comment_linter()

)

lint(
text = "x <- TRUE",
linters = todo_comment_linter()

trailing_blank_lines_linter
Trailing blank lines linter

Description

Check that there are no trailing blank lines in source code.

Usage

trailing_blank_lines_linter()

Tags

default, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
f <- withr::local_tempfile(lines = "x <- 1\n")
readLines(f)
lint(
filename = f,
linters = trailing_blank_lines_linter()

)

okay

trailing_whitespace_linter 119

f <- withr::local_tempfile(lines = "x <- 1")
readLines(f)
lint(

filename = f,

linters = trailing_blank_lines_linter()

trailing_whitespace_linter
Trailing whitespace linter

Description

Check that there are no space characters at the end of source lines.

Usage

trailing_whitespace_linter(allow_empty_lines = FALSE, allow_in_strings = TRUE)

Arguments

allow_empty_lines

Suppress lints for lines that contain only whitespace.
allow_in_strings

Suppress lints for trailing whitespace in string constants.

Tags

configurable, default, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "x <- 1.2 ",
linters = trailing_whitespace_linter()

)

code_lines <- "a <- TRUE\n \nb <- FALSE"
writeLines(code_lines)
lint(

text = code_lines,

linters = trailing_whitespace_linter()

)

okay
lint(
text = "x <- 1.2",
linters = trailing_whitespace_linter()

120 T_and_F_symbol_linter

)

lint(
text = "x <= 1.2 # comment about this assignment”,
linters = trailing_whitespace_linter()

)

code_lines <- "a <- TRUE\n \nb <- FALSE"
writeLines(code_lines)
lint(
text = code_lines,
linters = trailing_whitespace_linter(allow_empty_lines = TRUE)

T_and_F_symbol_linter T and F symbol linter

Description

Avoid the symbols T and F, and use TRUE and FALSE instead.

Usage
T_and_F_symbol_linter()

Tags

best_practices, consistency, default, readability, robustness, style

See Also

* linters for a complete list of linters available in lintr.

e https://style.tidyverse.org/syntax.html#logical-vectors

Examples

will produce lints
lint(

text = "x <- T; y <= F",

linters = T_and_F_symbol_linter()
)

lint(
text = "T =1.2; F = 2.4",
linters = T_and_F_symbol_linter()
)

okay

lint(
text = "x <- c(TRUE, FALSE)",
linters = T_and_F_symbol_linter()

https://style.tidyverse.org/syntax.html#logical-vectors

undesirable_function_linter 121

lint(
text = "t =1.2; f =2.4",
linters = T_and_F_symbol_linter()

undesirable_function_linter
Undesirable function linter

Description

Report the use of undesirable functions (e.g. base: :return(), base: :options(), orbase: :sapply())
and suggest an alternative.

Usage

undesirable_function_linter(
fun = default_undesirable_functions,
symbol_is_undesirable = TRUE

)

Arguments

fun Named character vector. names (fun) correspond to undesirable functions, while
the values give a description of why the function is undesirable. If NA, no addi-
tional information is given in the lint message. Defaults to default_undesirable_functions.
To make small customizations to this list, use modify_defaults().
symbol_is_undesirable
Whether to consider the use of an undesirable function name as a symbol unde-

sirable or not.
Tags

best_practices, configurable, efficiency, robustness, style

See Also

linters for a complete list of linters available in lintr.

Examples

defaults for which functions are considered undesirable
names(default_undesirable_functions)

will produce lints
lint(
text = "sapply(x, mean)”,
linters = undesirable_function_linter()

)

lint(
text = "loglo(x)",

122 undesirable_operator_linter

linters = undesirable_function_linter(fun = c("logl1@"

)

NA))

lint(
text = "loglo(x)",

linters = undesirable_function_linter(fun = c("log1@"” = "use log()"))
)
lint(
text = 'dir <- "path/to/a/directory”’',
linters = undesirable_function_linter(fun = c("dir"” = NA))
)
okay
lint(

text = "vapply(x, mean, FUN.VALUE = numeric(1))",
linters = undesirable_function_linter()

)
lint(
text = "log(x, base = 10)",
linters = undesirable_function_linter(fun = c("log1@" = "use log()"))
)
lint(

text = 'dir <- "path/to/a/directory”’',
linters = undesirable_function_linter(fun = c("dir"” = NA), symbol_is_undesirable = FALSE)

)

undesirable_operator_linter
Undesirable operator linter

Description

Report the use of undesirable operators, e.g. : : : or <<- and suggest an alternative.

Usage

undesirable_operator_linter(op = default_undesirable_operators)

Arguments
op Named character vector. names (op) correspond to undesirable operators, while
the values give a description of why the operator is undesirable. If NA, no addi-
tional information is given in the lint message. Defaults to default_undesirable_operators.
To make small customizations to this list, use modify_defaults().
Tags

best_practices, configurable, efficiency, robustness, style

unnecessary_concatenation_linter 123

See Also

linters for a complete list of linters available in lintr.

Examples

defaults for which functions are considered undesirable
names(default_undesirable_operators)

will produce lints
lint(
text = "a <<- log(10)",
linters = undesirable_operator_linter()

)
lint(
text = "mtcars$wt”,
linters = undesirable_operator_linter(op = c("$" = "As an alternative, use the “[[~ accessor.”))
)
okay
lint(

text = "a <- log(10)",
linters = undesirable_operator_linter()

)
lint(
text = 'mtcars[["wt"]]",
linters = undesirable_operator_linter(op = c("$" = NA))
)
lint(
text = 'mtcars[["wt"]1]',
linters = undesirable_operator_linter(op = c("$" = "As an alternative, use the “[[~ accessor.”))
)

unnecessary_concatenation_linter
Unneeded concatenation linter

Description

Check that the c() function is not used without arguments nor with a single constant.

Usage

unnecessary_concatenation_linter(allow_single_expression = TRUE)

Arguments

allow_single_expression
Logical, default TRUE. If FALSE, one-expression usages of c() are always linted,
e.g. c(x) and c(matrix(...)). In some such cases, c() is being used for its
side-effect of stripping non-name attributes; it is usually preferable to use the

124 unnecessary_concatenation_linter

more readable as. vector () instead. as.vector() is not always preferable, for
example with environments (especially, R6 objects), in which case 1ist() is the
better alternative.

Tags

configurable, efficiency, readability, style

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
lint(
text = "x <- c()",
linters = unnecessary_concatenation_linter()

lint(
text = "x <- c¢(TRUE)",
linters = unnecessary_concatenation_linter()

lint(
text = "x <- ¢(1.5 + 2.5)",
linters = unnecessary_concatenation_linter(allow_single_expression = FALSE)

okay
lint(
text = "x <- NULL",
linters = unnecessary_concatenation_linter()

In case the intent here was to seed a vector of known size
lint(

text = "x <- integer(4L)",

linters = unnecessary_concatenation_linter()

lint(
text = "x <- TRUE",
linters = unnecessary_concatenation_linter()

lint(
text = "x <- ¢(1.5 + 2.5)",
linters = unnecessary_concatenation_linter(allow_single_expression = TRUE)

unnecessary_lambda_linter 125

unnecessary_lambda_linter
Block usage of anonymous functions in iteration functions when un-
necessary

Description

Using an anonymous function in, e.g., lapply () is not always necessary, e.g. lapply(DF, sum) is
the same as lapply (DF, function(x) sum(x)) and the former is more readable.

Usage

unnecessary_lambda_linter()

Tags

best_practices, efficiency, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

lint(
text = "lapply(list(1:3, 2:4), function(xi) sum(xi))",
linters = unnecessary_lambda_linter()

)

okay

lint(
text = "lapply(list(1:3, 2:4), sum)”,
linters = unnecessary_lambda_linter()

)

lint(
text = 'lapply(x, function(xi) grep("ptn”, xi))',
linters = unnecessary_lambda_linter()

)

lint(
text = "lapply(x, function(xi) data.frame(col = xi))",
linters = unnecessary_lambda_linter()

126

unnecessary_placeholder_linter

unnecessary_nested_if_linter
Avoid unnecessary nested if conditional statements

Description

Avoid unnecessary nested if conditional statements

Usage

unnecessary_nested_if_linter()

Tags

best_practices, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

writeLines("if (x) { \n if (y) { \n return(iL) \n 3} \n}")
lint(
text = "if (x) { \n if (y) { \n return(iL) \n 3} \n}",

linters = unnecessary_nested_if_linter()

)

okay

writeLines("if (x && y) { \n

lint(

text = "if (x && y) { \n

return(1L) \n}")

return(1L) \n}",

linters = unnecessary_nested_if_linter()

)

writeLines("if (x) { \n
lint(
text = "if (x) { \n

y <= x + 1L\n

y <= x + 1L\n

if (y) { \n return(iL) \n

3 \n}"

if (y) { \n return(IL) \n

3 \n}",

linters = unnecessary_nested_if_linter()

unnecessary_placeholder_linter
Block usage of pipeline placeholders if unnecessary

Description

The argument placeholder .

in magrittr pipelines is unnecessary if passed as the first positional

argument; using it can cause confusion and impacts readability.

unreachable code_linter

Usage

unnecessary_placeholder_linter()

Details

This is true for forward (%>%), assignment (%<>%), and tee (%T>%) operators.

Tags

best_practices, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints

127

lint(
text = "x %>% sum(., na.rm = TRUE)",
linters = unnecessary_placeholder_linter()
)
okay
lint(
text = "x %>% sum(na.rm = TRUE)",
linters = unnecessary_placeholder_linter()
)
lint(
text = "x %% lm(data = ., y ~ z2)",
linters = unnecessary_placeholder_linter()
)
lint(
text = "x %>% outer(., .)",
linters = unnecessary_placeholder_linter()
)
unreachable_code_linter
Block unreachable code and comments following return statements
Description

Code after a top-level return() or stop() can’t be reached; typically this is vestigial code left after
refactoring or sandboxing code, which is fine for exploration, but shouldn’t ultimately be checked

in. Comments meant for posterity should be placed before the final return().

Usage

unreachable_code_linter()

128 unused_import_linter

Tags

best_practices, readability

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
code_lines <- "f <- function() {\n return(1 + 1)\n 2 + 2\n}"
writeLines(code_lines)
lint(
text = code_lines,
linters = unreachable_code_linter()

)

okay
code_lines <- "f <- function() {\n return(1 + 1)\n}"
writeLines(code_lines)
lint(
text = code_lines,
linters = unreachable_code_linter()

)

unused_import_linter Check that imported packages are actually used

Description

Check that imported packages are actually used

Usage

unused_import_linter(

allow_ns_usage = FALSE,

except_packages = c("bit64", "data.table”, "tidyverse")
)

Arguments

allow_ns_usage Suppress lints for packages only used via namespace. This is FALSE by de-
fault because pkg: : fun() doesn’t require library(pkg). You can use require-
Namespace("pkg") to ensure a package is installed without loading it.
except_packages
Character vector of packages that are ignored. These are usually attached for
their side effects.

Tags

best_practices, common_mistakes, configurable, executing

use_lintr 129

See Also

linters for a complete list of linters available in lintr.

Examples

will produce lints
code_lines <- "library(dplyr)\n1 + 1"
writeLines(code_lines)
lint(
text = code_lines,
linters = unused_import_linter()

)

code_lines <- "library(dplyr)\ndplyr::tibble(a = 1)"
writeLines(code_lines)
lint(

text = code_lines,

linters = unused_import_linter()

)

okay
code_lines <- "library(dplyr)\ntibble(a = 1)"
writeLines(code_lines)
lint(
text = code_lines,
linters = unused_import_linter()

)

code_lines <- "library(dplyr)\ndplyr::tibble(a = 1)"
writeLines(code_lines)
lint(

text = code_lines,

linters = unused_import_linter(allow_ns_usage = TRUE)

use_lintr Use lintr in your project

Description

Create a minimal lintr config file as a starting point for customization

Usage

non

use_lintr(path = , type = c("tidyverse”, "full"))

Arguments

path Path to project root, where a .lintr file should be created. If the .lintr file
already exists, an error will be thrown.

type What kind of configuration to create?

130 vector_logic_linter

* tidyverse creates a minimal lintr config, based on the default linters (1inters_with_defaults
These are suitable for following the tidyverse style guide.

e full creates a lintr config using all available linters via linters_with_tags().

Value

Path to the generated configuration, invisibly.

See Also

vignette("lintr") for detailed introduction to using and configuring lintr.

Examples

if (FALSE) {
use the default set of linters
lintr::use_lintr()
or try all linters
lintr::use_lintr(type = "full")

then
lintr::lint_dir()

vector_logic_linter Enforce usage of scalar logical operators in conditional statements

Description

Usage of & in conditional statements is error-prone and inefficient. condition in if (condition)
expr must always be of length 1, in which case && is to be preferred. Ditto for | vs. ||.

Usage

vector_logic_linter()

Details
This linter covers inputs to if() and while() conditions and to testthat: :expect_true() and
testthat: :expect_false().

Note that because & and | are generics, it is possible that &/ | | are not perfect substitutes because
& is doing method dispatch in an incompatible way.

Moreover, be wary of code that may have side effects, most commonly assignments. Consider

if ((a<-foo(x)) | (b<-bar(y))) { ... Fvs. if ((a<-foo(x)) || (b<=bar(y))){ ...}
Because || exits early, if a is TRUE, the second condition will never be evaluated and b will not
be assigned. Such usage is not allowed by the Tidyverse style guide, and the code can easily be
refactored by pulling the assignment outside the condition, so using | | is still preferable.

Tags

best_practices, default, efficiency

https://style.tidyverse.org/

whitespace_linter 131

See Also

* linters for a complete list of linters available in lintr.

e https://style.tidyverse.org/syntax.html#if-statements

Examples

will produce lints

lint(
text = "if (TRUE & FALSE) 1",
linters = vector_logic_linter()

)

lint(
text = "if (TRUE && (TRUE | FALSE)) 4",
linters = vector_logic_linter()

)

okay

lint(
text = "if (TRUE && FALSE) 1",
linters = vector_logic_linter()

)

lint(
text = "if (TRUE & (TRUE || FALSE)) 4",
linters = vector_logic_linter()

whitespace_linter Whitespace linter

Description

Check that the correct character is used for indentation.

Usage

whitespace_linter()

Details

Currently, only supports linting in the presence of tabs.

Much ink has been spilled on this topic, and we encourage you to check out references for more
information.

Tags

consistency, default, style

https://style.tidyverse.org/syntax.html#if-statements

132 xml_nodes_to_lints

References

* https://www.jwz.org/doc/tabs-vs-spaces.html

* https://blog.codinghorror.com/death-to-the-space-infidels/

See Also

linters for a complete list of linters available in lintr.

Examples
will produce lints
lint(
text = "\tx",
linters = whitespace_linter()
)
okay
lint(
text = " x",
linters = whitespace_linter()
)
xml_nodes_to_lints Convert an XML node or nodeset into a Lint
Description

Convenience function for converting nodes matched by XPath-based linter logic into a Lint()
object to return.

Usage

xml_nodes_to_lints(
xml,
source_expression,
lint_message,
type = c("style”, "warning”, "error"),
column_number_xpath = range_start_xpath,
range_start_xpath = "number(./@col1)",
range_end_xpath = "number(./@col2)"

Arguments

xml An xml_node object (to generate one Lint) or an xml_nodeset object (to gener-
ate several Lints), e.g. asreturned by xm12: :xml_find_all() orxml2::xml_find_first()
or a list of xml_node objects.
source_expression
A source expression object, e.g. as returned typically by 1int (), or more gen-
erally by get_source_expressions().

yoda_test_linter 133

lint_message The message to be included as the message to the Lint object. If 1int_message
is a character vector the same length as xml, the i-th lint will be given the i-th
message.

type type of lint.

column_number_xpath
XPath expression to return the column number location of the lint. Defaults to
the start of the range matched by range_start_xpath. See details for more
information.

range_start_xpath
XPath expression to return the range start location of the lint. Defaults to the
start of the expression matched by xml. See details for more information.

range_end_xpath
XPath expression to return the range end location of the lint. Defaults to the end
of the expression matched by xml. See details for more information.

Details

The location XPaths, column_number_xpath, range_start_xpath and range_end_xpath are eval-
uated using xm12: : xml_find_num() and will usually be of the form "number(./relative/xpath)".
Note that the location line number cannot be changed and lints spanning multiple lines will ignore
range_end_xpath. column_number_xpath and range_start_xpath are assumed to always refer
to locations on the starting line of the xml node.

Value

For xml_nodes, a 1lint. For xml_nodesets, lints (a list of 1ints).

yoda_test_linter Block obvious "yoda tests"

Description

Yoda tests use (expected, actual) instead of the more common (actual, expected). This is
not always possible to detect statically; this linter focuses on the simple case of testing an expression
against a literal value, e.g. (1L, foo(x)) should be (foo(x), 1L).

Usage

yoda_test_linter()

Tags

best_practices, package_development, readability

See Also

linters for a complete list of linters available in lintr. https://en.wikipedia.org/wiki/Yoda_
conditions

https://en.wikipedia.org/wiki/Yoda_conditions
https://en.wikipedia.org/wiki/Yoda_conditions

134 yoda_test_linter

Examples

will produce lints

lint(
text = "expect_equal(2, x)",
linters = yoda_test_linter()

)

lint(
text = 'expect_identical(”"a", x)',
linters = yoda_test_linter()

)

okay

lint(

text = "expect_equal(x, 2)",
linters = yoda_test_linter()

)

lint(
text = 'expect_identical(x, "a")',
linters = yoda_test_linter()

	absolute_path_linter
	all_linters
	all_undesirable_functions
	any_duplicated_linter
	any_is_na_linter
	assignment_linter
	available_linters
	backport_linter
	best_practices_linters
	boolean_arithmetic_linter
	brace_linter
	checkstyle_output
	class_equals_linter
	clear_cache
	commas_linter
	commented_code_linter
	common_mistakes_linters
	condition_message_linter
	configurable_linters
	conjunct_test_linter
	consecutive_assertion_linter
	consistency_linters
	correctness_linters
	cyclocomp_linter
	default_linters
	default_settings
	deprecated_linters
	duplicate_argument_linter
	efficiency_linters
	empty_assignment_linter
	equals_na_linter
	exclude
	executing_linters
	expect_comparison_linter
	expect_identical_linter
	expect_length_linter
	expect_lint
	expect_lint_free
	expect_named_linter
	expect_not_linter
	expect_null_linter
	expect_s3_class_linter
	expect_s4_class_linter
	expect_true_false_linter
	expect_type_linter
	extraction_operator_linter
	fixed_regex_linter
	for_loop_index_linter
	function_argument_linter
	function_left_parentheses_linter
	function_return_linter
	get_r_string
	get_source_expressions
	ids_with_token
	ifelse_censor_linter
	implicit_assignment_linter
	implicit_integer_linter
	indentation_linter
	infix_spaces_linter
	inner_combine_linter
	is_lint_level
	is_numeric_linter
	lengths_linter
	line_length_linter
	lint
	lint-s3
	Linter
	linters
	linters_with_defaults
	linters_with_tags
	literal_coercion_linter
	matrix_apply_linter
	missing_argument_linter
	missing_package_linter
	modify_defaults
	namespace_linter
	nested_ifelse_linter
	nonportable_path_linter
	numeric_leading_zero_linter
	object_length_linter
	object_name_linter
	object_usage_linter
	outer_negation_linter
	package_development_linters
	package_hooks_linter
	paren_body_linter
	parse_exclusions
	paste_linter
	pipe_call_linter
	pipe_continuation_linter
	quotes_linter
	readability_linters
	read_settings
	redundant_equals_linter
	redundant_ifelse_linter
	regex_subset_linter
	robustness_linters
	routine_registration_linter
	sarif_output
	semicolon_linter
	seq_linter
	sort_linter
	spaces_inside_linter
	spaces_left_parentheses_linter
	sprintf_linter
	strings_as_factors_linter
	string_boundary_linter
	style_linters
	system_file_linter
	todo_comment_linter
	trailing_blank_lines_linter
	trailing_whitespace_linter
	T_and_F_symbol_linter
	undesirable_function_linter
	undesirable_operator_linter
	unnecessary_concatenation_linter
	unnecessary_lambda_linter
	unnecessary_nested_if_linter
	unnecessary_placeholder_linter
	unreachable_code_linter
	unused_import_linter
	use_lintr
	vector_logic_linter
	whitespace_linter
	xml_nodes_to_lints
	yoda_test_linter

