We compute nonminimal resolution F of the carpet of type (a,b) over a finite prime field, Lift this to a resolution over ZZ, introduce the fine grading, grep the various blocks of the crucial map in the a-th strand, compute their determinants and return their product.
i1 : a=4,b=4 o1 = (4, 4) o1 : Sequence |
i2 : d=carpetDet(a,b) -- 0.00497525 seconds elapsed -- 0.0118564 seconds elapsed -- 0.000175791 seconds elapsed -- 0.000108221 seconds elapsed -- 0.000106821 seconds elapsed -- 0.000102361 seconds elapsed -- 0.000105421 seconds elapsed -- 0.000109552 seconds elapsed -- 0.00016021 seconds elapsed -- 0.00013283 seconds elapsed -- 0.000133941 seconds elapsed -- 0.000112172 seconds elapsed -- 0.000105981 seconds elapsed -- 0.000109181 seconds elapsed -- 0.000108172 seconds elapsed -- 0.000104632 seconds elapsed -- 0.000111761 seconds elapsed -- 0.000115801 seconds elapsed -- 0.000117811 seconds elapsed -- 0.000114501 seconds elapsed -- 0.000126701 seconds elapsed -- 0.000117371 seconds elapsed -- 0.000106711 seconds elapsed -- 0.000107401 seconds elapsed -- 0.000109671 seconds elapsed -- 0.00010671 seconds elapsed -- 0.000106572 seconds elapsed -- 0.000107882 seconds elapsed (number Of blocks, 26) 1 1 1 1 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 2 2 2 1 1 1 1 o2 = 3131031158784 |
i3 : factor d 32 6 o3 = 2 3 o3 : Expression of class Product |
The object carpetDet is a method function.